The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Marphos     phosphoric acid

Synonyms: OyAxEa, Evits, Phospholeum, Sonac, Phosphorsaeure, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of orthophosphate

 

Psychiatry related information on orthophosphate

  • The enzyme promotes first a phosphoryl transfer from GTP to the 6-oxygen atom of IMP, by way of a transition state that has characteristics of both associative and dissociative reaction pathways [6].
  • Creatine kinase isoenzymes (CK; EC 2.7.3.2) play a pivotal role in high-energy phosphoryl metabolism through subcellular compartmentation of the creatine-phosphate < = > ATP conversion reaction [7].
 

High impact information on orthophosphate

 

Chemical compound and disease context of orthophosphate

 

Biological context of orthophosphate

 

Anatomical context of orthophosphate

 

Associations of orthophosphate with other chemical compounds

  • The phosphoryl transfer reaction catalyzed by protein-tyrosine phosphatases proceeds by a transition state very similar to that of the uncatalyzed reaction, but isotope effect data reveal an interesting interplay between the conserved arginine and enzyme dynamics involving general acid catalysis [25].
  • One-sixth of the lymphocytes adhered specifically to surfaces derivatized with PPME (a phosphomannan polysaccharide prepared from Hansenula holstii yeast), whereas up to half of the cells adhered to surfaces derivatized with fucoidan [26].
  • A mutation in a DDE motif abolishes both endonucleolytic and phosphoryl transfer activities, suggesting that Tc1A carries a catalytic core common to retroviral integrases and IS transposases [27].
  • The adenosine triphosphate and inorganic orthophosphate findings suggest functional hypoactivity of the dorsal prefrontal cortex [28].
  • Starch synthesis was inhibited within 24 h of tuber detachment, even though the catalytic subunit of AGPase (AGPB) and overall AGPase activity remained high, the substrates ATP and Glc-1-P increased, and the glycerate-3-phosphate/inorganic orthophosphate (the allosteric activator and inhibitor, respectively) ratio increased [29].
 

Gene context of orthophosphate

 

Analytical, diagnostic and therapeutic context of orthophosphate

  • However, immunoprecipitation of [32P] orthophosphate-labeled UBF from hypertrophying neonatal cardiomyocytes suggested that the increased rate of rDNA transcription may be due to the hyperphosphorylation of UBF, which would increase the activity of UBF [34].
  • Peptide mapping and mutational analyses localized the bulk of the basal phosphorylation sites in I(kappa)B(beta) to the C-terminal PEST domain, which contains two potential acceptors for CKII-mediated phosphoryl group transfer (Ser-313 and Ser-315) [35].
  • Perfusion of the liver with a Krebs medium containing 70 mM (0.4%) ethanol induced a sharp decrease in intracellular inorganic orthophosphate to reach 1.3 mumole per gm liver wet weight and after a lag time of 4 to 6 min, a decrease in ATP level (2.15 mumoles per gm liver wet weight) [36].
  • Under all conditions only inorganic orthophosphate showed an invariant titration curve [37].
  • Eukaryotic initiation factor 4F, a multi-protein mRNA cap binding complex, was isolated by m7GTP-Sepharose affinity chromatography from human mammary epithelial cells (184A1N4) incubated with [32P] orthophosphate [38].

References

  1. Results of long-term treatment with orthophosphate and pyridoxine in patients with primary hyperoxaluria. Milliner, D.S., Eickholt, J.T., Bergstralh, E.J., Wilson, D.M., Smith, L.H. N. Engl. J. Med. (1994) [Pubmed]
  2. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Bjerrum, C.J., Canfield, D.E. Nature (2002) [Pubmed]
  3. Role of the sigma 70 subunit of RNA polymerase in transcriptional activation by activator protein PhoB in Escherichia coli. Makino, K., Amemura, M., Kim, S.K., Nakata, A., Shinagawa, H. Genes Dev. (1993) [Pubmed]
  4. SLC34A3 Mutations in Patients with Hereditary Hypophosphatemic Rickets with Hypercalciuria Predict a Key Role for the Sodium-Phosphate Cotransporter NaPi-IIc in Maintaining Phosphate Homeostasis. Bergwitz, C., Roslin, N.M., Tieder, M., Loredo-Osti, J.C., Bastepe, M., Abu-Zahra, H., Frappier, D., Burkett, K., Carpenter, T.O., Anderson, D., Garabedian, M., Sermet, I., Fujiwara, T.M., Morgan, K., Tenenhouse, H.S., Juppner, H. Am. J. Hum. Genet. (2006) [Pubmed]
  5. Primary and secondary structure of bovine retinal S antigen (48-kDa protein). Shinohara, T., Dietzschold, B., Craft, C.M., Wistow, G., Early, J.J., Donoso, L.A., Horwitz, J., Tao, R. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  6. Structure-function studies of adenylosuccinate synthetase from Escherichia coli. Honzatko, R.B., Fromm, H.J. Arch. Biochem. Biophys. (1999) [Pubmed]
  7. Mice deficient in ubiquitous mitochondrial creatine kinase are viable and fertile. Steeghs, K., Oerlemans, F., Wieringa, B. Biochim. Biophys. Acta (1995) [Pubmed]
  8. Single active site catalysis of the successive phosphoryl transfer steps by DNA transposases: insights from phosphorothioate stereoselectivity. Kennedy, A.K., Haniford, D.B., Mizuuchi, K. Cell (2000) [Pubmed]
  9. Metal-ion coordination by U6 small nuclear RNA contributes to catalysis in the spliceosome. Yean, S.L., Wuenschell, G., Termini, J., Lin, R.J. Nature (2000) [Pubmed]
  10. Signal transduction in bacteria. Stock, J.B., Stock, A.M., Mottonen, J.M. Nature (1990) [Pubmed]
  11. Importance of the carboxyl-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate: sugar phosphotransferase system for phosphoryl donor specificity. Seok, Y.J., Lee, B.R., Zhu, P.P., Peterkofsky, A. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  12. Glycosyl-phosphatidylinositol anchor synthesis in paroxysmal nocturnal hemoglobinuria: partial or complete defect in an early step. Norris, J., Hall, S., Ware, R.E., Kamitani, T., Chang, H.M., Yeh, E., Rosse, W.F. Blood (1994) [Pubmed]
  13. Pyruvate, phosphate dikinase of Bacteroides symbiosus. Catalysis of partial reactions and formation of phosphoryl and pyrophosphoryl forms of the enzyme. Milner, Y., Michaels, G., Wood, H.G. J. Biol. Chem. (1978) [Pubmed]
  14. The aspartyl replacement of the active site histidine in histidine-containing protein, HPr, of the Escherichia coli Phosphoenolpyruvate:Sugar phosphotransferase system can accept and donate a phosphoryl group. Spontaneous dephosphorylation of acyl-phosphate autocatalyzes an internal cyclization. Napper, S., Delbaere, L.T., Waygood, E.B. J. Biol. Chem. (1999) [Pubmed]
  15. Kinetic analyses of the sugar phosphate:sugar transphosphorylation reaction catalyzed by the glucose enzyme II complex of the bacterial phosphotransferase system. Rephaeli, A.W., Saier, M.H. J. Biol. Chem. (1978) [Pubmed]
  16. Histidine phosphorylation and phosphoryl group transfer in bacterial chemotaxis. Hess, J.F., Bourret, R.B., Simon, M.I. Nature (1988) [Pubmed]
  17. Mutations in the active site of Escherichia coli phosphofructokinase. Hellinga, H.W., Evans, P.R. Nature (1987) [Pubmed]
  18. Creatine kinase role in anaphase chromosome movement. Cande, W.Z. Nature (1983) [Pubmed]
  19. Why nature chose phosphates. Westheimer, F.H. Science (1987) [Pubmed]
  20. Orthophosphate transport in the erythrocyte of normal subjects and of patients with X-linked hypophosphatemia. Tenenhouse, H.S., Scriver, C.R. J. Clin. Invest. (1975) [Pubmed]
  21. Transfection-mediated expression of a dominant cAMP-resistant phenotype in the opossum kidney (OK) cell line prevents parathyroid hormone-induced inhibition of Na-phosphate cotransport. A protein kinase-A-mediated event. Segal, J.H., Pollock, A.S. J. Clin. Invest. (1990) [Pubmed]
  22. The origins of RNA catalysis in ribozymes. Lilley, D.M. Trends Biochem. Sci. (2003) [Pubmed]
  23. Characterization and expression of a novel Na(+)-inorganic phosphate transporter at the liver plasma membrane of the rat. Ghishan, F.K., Rebeiz, R., Honda, T., Nakagawa, N. Gastroenterology (1993) [Pubmed]
  24. Fibroblast receptor for lysosomal enzymes mediates pinocytosis of multivalent phosphomannan fragment. Fischer, H.D., Natowicz, M., Sly, W.S., Bretthauer, R.K. J. Cell Biol. (1980) [Pubmed]
  25. Isotope effects in the study of phosphoryl and sulfuryl transfer reactions. Hengge, A.C. Acc. Chem. Res. (2002) [Pubmed]
  26. Multiple carbohydrate receptors on lymphocytes revealed by adhesion to immobilized polysaccharides. Brandley, B.K., Ross, T.S., Schnaar, R.L. J. Cell Biol. (1987) [Pubmed]
  27. Tc1 transposase of Caenorhabditis elegans is an endonuclease with a bipartite DNA binding domain. Vos, J.C., Plasterk, R.H. EMBO J. (1994) [Pubmed]
  28. Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenics. A pilot study of the dorsal prefrontal cortex by in vivo phosphorus 31 nuclear magnetic resonance spectroscopy. Pettegrew, J.W., Keshavan, M.S., Panchalingam, K., Strychor, S., Kaplan, D.B., Tretta, M.G., Allen, M. Arch. Gen. Psychiatry (1991) [Pubmed]
  29. Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply. Tiessen, A., Hendriks, J.H., Stitt, M., Branscheid, A., Gibon, Y., Farré, E.M., Geigenberger, P. Plant Cell (2002) [Pubmed]
  30. The transcription factor, the Cdk, its cyclin and their regulator: directing the transcriptional response to a nutritional signal. Hirst, K., Fisher, F., McAndrew, P.C., Goding, C.R. EMBO J. (1994) [Pubmed]
  31. Combined top-down and bottom-up proteomics identifies a phosphorylation site in stem-loop-binding proteins that contributes to high-affinity RNA binding. Borchers, C.H., Thapar, R., Petrotchenko, E.V., Torres, M.P., Speir, J.P., Easterling, M., Dominski, Z., Marzluff, W.F. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  32. A kinase-negative epidermal growth factor receptor that retains the capacity to stimulate DNA synthesis. Coker, K.J., Staros, J.V., Guyer, C.A. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  33. Mutations in the fukutin-related protein gene (FKRP) cause a form of congenital muscular dystrophy with secondary laminin alpha2 deficiency and abnormal glycosylation of alpha-dystroglycan. Brockington, M., Blake, D.J., Prandini, P., Brown, S.C., Torelli, S., Benson, M.A., Ponting, C.P., Estournet, B., Romero, N.B., Mercuri, E., Voit, T., Sewry, C.A., Guicheney, P., Muntoni, F. Am. J. Hum. Genet. (2001) [Pubmed]
  34. Regulation of rDNA transcription during endothelin-1-induced hypertrophy of neonatal cardiomyocytes. Hyperphosphorylation of upstream binding factor, an rDNA transcription factor. Luyken, J., Hannan, R.D., Cheung, J.Y., Rothblum, L.I. Circ. Res. (1996) [Pubmed]
  35. Basal phosphorylation of the PEST domain in the I(kappa)B(beta) regulates its functional interaction with the c-rel proto-oncogene product. Chu, Z.L., McKinsey, T.A., Liu, L., Qi, X., Ballard, D.W. Mol. Cell. Biol. (1996) [Pubmed]
  36. Hepatic metabolism during acute ethanol administration: a phosphorus-31 nuclear magnetic resonance study on the perfused rat liver under normoxic or hypoxic conditions. Desmoulin, F., Canioni, P., Crotte, C., Gérolami, A., Cozzone, P.J. Hepatology (1987) [Pubmed]
  37. Analysis of phosphate metabolites, the intracellular pH, and the state of adenosine triphosphate in intact muscle by phosphorus nuclear magnetic resonance. Burt, C.T., Glonek, T., Bárány, M. J. Biol. Chem. (1976) [Pubmed]
  38. Epidermal growth factor or okadaic acid stimulates phosphorylation of eukaryotic initiation factor 4F. Donaldson, R.W., Hagedorn, C.H., Cohen, S. J. Biol. Chem. (1991) [Pubmed]
 
WikiGenes - Universities