The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Dipicolinate     pyridine-2,6-dicarboxylic acid

Synonyms: PubChem8067, TPC-I152, NSC-176, SureCN34595, NSC176, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Dipicolinate

 

High impact information on Dipicolinate

  • We use time-resolved coherent Raman spectroscopy to obtain molecule-specific signals from dipicolinic acid (DPA), which is a marker molecule for bacterial spores [6].
  • Human glutaminyl cyclase (QC) was identified as a metalloenzyme as suggested by the time-dependent inhibition by the heterocyclic chelators 1,10-phenanthroline and dipicolinic acid [7].
  • Disruption of orfX had no effect on growth but caused a sporulation defect, characterized by low sporulation frequencies and heat-sensitive spores, which could be cured by supplementation with dipicolinate, similar to the phenotype of mutants defective in spoVF, the putative structural gene for dipicolinate synthase [1].
  • Cloning, DNA sequence, functional analysis and transcriptional regulation of the genes encoding dipicolinic acid synthetase required for sporulation in Bacillus subtilis [8].
  • The germination kinetics at varying concentrations of l-alanine and different temperatures were studied by monitoring the intensity and growth of the Raman peak at 1010 cm(-)(1), which is characteristic of dipicolinic acid [9].
 

Chemical compound and disease context of Dipicolinate

  • Bacillus subtilis spores can germinate with a 1:1 chelate of Ca(2+) and dipicolinic acid (DPA), a compound present at high levels in the spore core [10].
  • Surface-enhanced Raman spectroscopy (SERS) potentially has the sensitivity and discrimination needed for trace DPA analysis, but mixing DPA solutions with citrate-reduced silver colloid only yielded measurable SERS spectra at much higher (>80 ppm) concentrations than would be desirable for anthrax detection [11].
  • When the spores of Bacillus megaterium QM B1551 (ATCC 12872) were incubated with 5 mM CdCl2 at 30 C, they underwent the early germination events, such as loss of heat resistance and release of calcium dipicolinate, in the same way as when they were germinated by glucose + KNO3 [12].
  • A Bacillus subtilis veg mutant exhibited a small reduction of absorbance, a large reduction of hexosamine release, and slow dipicolinic acid release from spores during germination with L-alanine as a germinant [13].
  • Actinomycin D allowed 3.6% of spore formation and 4.9% of dipicolinic acid synthesis of control cultures when added at 0.4 microM at late stage (T6.5) during sporulation process of Bacillus subtilis although the drug inhibited sporulation almost completely when added at log phase and early stages [14].
 

Biological context of Dipicolinate

 

Anatomical context of Dipicolinate

 

Associations of Dipicolinate with other chemical compounds

 

Gene context of Dipicolinate

 

Analytical, diagnostic and therapeutic context of Dipicolinate

References

  1. Organization and nucleotide sequence of the Bacillus subtilis diaminopimelate operon, a cluster of genes encoding the first three enzymes of diaminopimelate synthesis and dipicolinate synthase. Chen, N.Y., Jiang, S.Q., Klein, D.A., Paulus, H. J. Biol. Chem. (1993) [Pubmed]
  2. Impaired handling of orally administered zinc in pancreatic insufficiency. Boosalis, M.G., Evans, G.W., McClain, C.J. Am. J. Clin. Nutr. (1983) [Pubmed]
  3. Manganese ion interaction with glutamine synthetase from Escherichia coli: kinetic and equilibrium studies with xylenol orange and pyridine-2,6-dicarboxylic acid. Hunt, J.B., Ginsburg, A. Biochemistry (1981) [Pubmed]
  4. Osmotically induced increase in thermal resistance of heat-sensitive, dipicolinic acid-less spores of Bacillus cereus Ht-8. Bhothipaksa, K., Busta, F.F. Appl. Environ. Microbiol. (1978) [Pubmed]
  5. Legionnaires' disease bacterium: a non-endospore-former. Smalley, D.L., Ourth, D.D., Hollis, C.G. Am. J. Clin. Pathol. (1980) [Pubmed]
  6. Visible and UV coherent Raman spectroscopy of dipicolinic acid. Pestov, D., Zhi, M., Sariyanni, Z.E., Kalugin, N.G., Kolomenskii, A.A., Murawski, R., Paulus, G.G., Sautenkov, V.A., Schuessler, H., Sokolov, A.V., Welch, G.R., Rostovtsev, Y.V., Siebert, T., Akimov, D.A., Graefe, S., Kiefer, W., Scully, M.O. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  7. Identification of human glutaminyl cyclase as a metalloenzyme. Potent inhibition by imidazole derivatives and heterocyclic chelators. Schilling, S., Niestroj, A.J., Rahfeld, J.U., Hoffmann, T., Wermann, M., Zunkel, K., Wasternack, C., Demuth, H.U. J. Biol. Chem. (2003) [Pubmed]
  8. Cloning, DNA sequence, functional analysis and transcriptional regulation of the genes encoding dipicolinic acid synthetase required for sporulation in Bacillus subtilis. Daniel, R.A., Errington, J. J. Mol. Biol. (1993) [Pubmed]
  9. Monitoring the kinetics of Bacillus subtilis endospore germination via surface-enhanced Raman scattering spectroscopy. Daniels, J.K., Caldwell, T.P., Christensen, K.A., Chumanov, G. Anal. Chem. (2006) [Pubmed]
  10. Identification of a new gene essential for germination of Bacillus subtilis spores with Ca2+-dipicolinate. Ragkousi, K., Eichenberger, P., van Ooij, C., Setlow, P. J. Bacteriol. (2003) [Pubmed]
  11. Quantitative surface-enhanced Raman spectroscopy of dipicolinic acid--towards rapid anthrax endospore detection. Bell, S.E., Mackle, J.N., Sirimuthu, N.M. The Analyst. (2005) [Pubmed]
  12. Inhibition of cortex hydrolysis during spore germination by CdCl2. Nakatani, Y., Imagawa, M., Nishihara, T., Kondo, M. Microbiol. Immunol. (1985) [Pubmed]
  13. Transcriptional, functional and cytochemical analyses of the veg gene in Bacillus subtilis. Fukushima, T., Ishikawa, S., Yamamoto, H., Ogasawara, N., Sekiguchi, J. J. Biochem. (2003) [Pubmed]
  14. Cooperative effects of daunorubicin and actinomycin D on the sporulation of Bacillus subtilis. Nakayama, T., Kurogi, Y., Matsuo, H. J. Biochem. (1980) [Pubmed]
  15. Kinetics of Ca2+-induced fusion of cardiolipin-phosphatidylcholine vesicles: correlation between vesicle aggregation, bilayer destabilization, and fusion. Wilschut, J., Nir, S., Scholma, J., Hoekstra, D. Biochemistry (1985) [Pubmed]
  16. The use of inhibitors to identify early events during Bacillus megaterium KM spore germination. Foster, S.J., Johnstone, K. Biochem. J. (1986) [Pubmed]
  17. Selective complexation and transport of europium ions at the interface of vesicles. Marchi-Artzner, V., Brienne, M.J., Gulik-Krzywicki, T., Dedieu, J.C., Lehn, J.M. Chemistry (Weinheim an der Bergstrasse, Germany) (2004) [Pubmed]
  18. The products of the spoVA operon are involved in dipicolinic acid uptake into developing spores of Bacillus subtilis. Tovar-Rojo, F., Chander, M., Setlow, B., Setlow, P. J. Bacteriol. (2002) [Pubmed]
  19. Zinc concentration of liver and kidneys from rat pups nursing dams fed supplemented zinc dipicolinate or zinc acetate. Evans, G.W., Johnson, E.C. J. Nutr. (1980) [Pubmed]
  20. Influence of glutamate on growth, sporulation, and spore properties of Bacillus cereus ATCC 14579 in defined medium. de Vries, Y.P., Atmadja, R.D., Hornstra, L.M., de Vos, W.M., Abee, T. Appl. Environ. Microbiol. (2005) [Pubmed]
  21. Effect of dipicolinate, a chelator of zinc, on bone protein synthesis in tissue culture. The essential role of zinc. Yamaguchi, M., Matsui, R. Biochem. Pharmacol. (1989) [Pubmed]
  22. Resistance, germination, and permeability correlates of Bacillus megaterium spores successively divested of integument layers. Koshikawa, T., Beaman, T.C., Pankratz, H.S., Nakashio, S., Corner, T.R., Gerhardt, P. J. Bacteriol. (1984) [Pubmed]
  23. Synaptobrevin cleavage by the tetanus toxin light chain is linked to the inhibition of exocytosis in chromaffin cells. Höhne-Zell, B., Ecker, A., Weller, U., Gratzl, M. FEBS Lett. (1994) [Pubmed]
  24. Manipulations of zinc in the spinal cord, by intrathecal injection of zinc chloride, disodium-calcium-EDTA, or dipicolinic acid, alter nociceptive activity in mice. Larson, A.A., Kitto, K.F. J. Pharmacol. Exp. Ther. (1997) [Pubmed]
  25. Modulation of membrane fusion by membrane fluidity: temperature dependence of divalent cation induced fusion of phosphatidylserine vesicles. Wilschut, J., Düzgüneş, N., Hoekstra, D., Papahadjopoulos, D. Biochemistry (1985) [Pubmed]
  26. Polyamines as modulators of membrane fusion: aggregation and fusion of liposomes. Schuber, F., Hong, K., Düzgünes, N., Papahadjopoulos, D. Biochemistry (1983) [Pubmed]
  27. Detection of the dipicolinic acid biomarker in Bacillus spores using Curie-point pyrolysis mass spectrometry and Fourier transform infrared spectroscopy. Goodacre, R., Shann, B., Gilbert, R.J., Timmins, E.M., McGovern, A.C., Alsberg, B.K., Kell, D.B., Logan, N.A. Anal. Chem. (2000) [Pubmed]
  28. Transbilayer lipid redistribution accompanies poly(ethylene glycol) treatment of model membranes but is not induced by fusion. Lentz, B.R., Talbot, W., Lee, J., Zheng, L.X. Biochemistry (1997) [Pubmed]
  29. Sensitive femtosecond coherent anti-Stokes Raman spectroscopy discrimination between dipicolinic acid and dinicotinic acid. Dogariu, A., Huang, Y., Avitzour, Y., Murawski, R.K., Scully, M.O. Optics letters. (2006) [Pubmed]
  30. Stimulatory effect of zinc and growth factor on bone protein component in newborn rats: enhancement with zinc and insulin-like growth factor-I. Ma, Z.J., Yamaguchi, M. Int. J. Mol. Med. (2001) [Pubmed]
  31. Escherichia coli dihydrodipicolinate synthase. Identification of the active site and crystallization. Laber, B., Gomis-Rüth, F.X., Romão, M.J., Huber, R. Biochem. J. (1992) [Pubmed]
  32. Regulation and characterization of a newly deduced cell wall hydrolase gene (cwlJ) which affects germination of Bacillus subtilis spores. Ishikawa, S., Yamane, K., Sekiguchi, J. J. Bacteriol. (1998) [Pubmed]
  33. Selective activation of calcineurin by dipicolinic acid. Martin, B.L. Arch. Biochem. Biophys. (1997) [Pubmed]
  34. Evaluation of dipicolinic acid for detection of IMP- or VIM- type metallo-beta-lactamase-producing Pseudomonas aeruginosa clinical isolates. Kimura, S., Ishii, Y., Yamaguchi, K. Diagn. Microbiol. Infect. Dis. (2005) [Pubmed]
  35. Ultrastructural localization of dipicolinic acid in dormant spores of Bacillus subtilis by immunoelectron microscopy with colloidal gold particles. Kozuka, S., Yasuda, Y., Tochikubo, K. J. Bacteriol. (1985) [Pubmed]
  36. Branched pattern of regulatory interactions between late sporulation genes in Bacillus subtilis. Errington, J., Cutting, S.M., Mandelstam, J. J. Bacteriol. (1988) [Pubmed]
  37. Involvement of the spore coat in germination of Bacillus cereus T spores. Kutima, P.M., Foegeding, P.M. Appl. Environ. Microbiol. (1987) [Pubmed]
  38. Tissue uptake of zinc in rats following the administration of zinc dipicolinate or zinc histidinate. Johnson, W.T., Evans, G.W. J. Nutr. (1982) [Pubmed]
 
WikiGenes - Universities