The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

seryl phosphate     2-amino-3-phosphonooxy- propanoic acid

Synonyms: Serophen, Energoserina, P-serine, DL-SOP, P-ser, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of phosphoserine

 

Psychiatry related information on phosphoserine

 

High impact information on phosphoserine

 

Chemical compound and disease context of phosphoserine

  • Analysis of phosphoamino acids revealed two sites, phosphoserine and phosphothreonine. beta-Glucuronidase from hepatoma consisted of a major subunit with molecular mass of 64,000 (64 kDa) and a minor subunit with 76 kDa, whereas the hydrolase from normal liver had almost exclusively 64 kDa subunit [13].
  • Two cellular proteins of 36 and 63 kDa which bind the small T and middle T antigens of polyomavirus recently have been identified as the catalytic and regulatory subunits of the phosphoserine/threonine-specific type 2A protein phosphatase (PP2A) [14].
  • Iterative profile sequence analysis reveals a remote homology of peroxisomal serine-pyruvate aminotransferases from mammals to the small subunit of soluble hydrogenases from cyanobacteria, an isopenicillin N epimerase, the NifS gene products from bacteria and yeast, and the phosphoserine aminotransferase family [15].
  • A myxoma I1L variant, in which the active site cysteine 110 was mutated to serine, was expressed in a parallel fashion to the wild-type I1L protein and found to be completely deficient in its ability to dephosphorylate both phosphotyrosine and phosphoserine amino acids [16].
 

Biological context of phosphoserine

 

Anatomical context of phosphoserine

 

Associations of phosphoserine with other chemical compounds

  • We report here that MAP kinase can be deactivated completely by treatment with either phosphatase 2A, a protein phosphatase specific for phosphoserine and phosphothreonine, or CD45, a phosphotyrosine-specific protein phosphatase [27].
  • This phosphorylation switch can be mimicked by aspartic acid instead of phosphoserine [28].
  • Tryptic phosphopeptide analysis demonstrated that the catalytic subunit phosphorylated a serine-containing tryptic peptide in the bacterial src protein that comigrated with the phosphoserine-containing tryptic peptide of pp60src immunoprecipitated from 32P-labeled PrA-RSV-infected chicken cells [29].
  • Inclusion of phosphatase inhibitors decreases the rate at which the stimulated MAP-2 kinase activity is lost from extract supernatants incubated at 30 degrees C. p-Nitrophenyl phosphate is more effective than DL-phosphotyrosine, whereas DL-phosphoserine is without effect at the concentration used (40 mM) [30].
  • Using two-dimensional gel analysis in combination with a phosphoserine-specific antiserum, we demonstrate that the nephrin-induced AKT mediates phosphorylation of several target proteins in podocytes [31].
 

Gene context of phosphoserine

 

Analytical, diagnostic and therapeutic context of phosphoserine

References

  1. Phosphorylation within a specific domain of the phosphoprotein of vesicular stomatitis virus regulates transcription in vitro. Chattopadhyay, D., Banerjee, A.K. Cell (1987) [Pubmed]
  2. A Tyr/Ser protein phosphatase encoded by vaccinia virus. Guan, K.L., Broyles, S.S., Dixon, J.E. Nature (1991) [Pubmed]
  3. The DNA invertase Gin of phage Mu: formation of a covalent complex with DNA via a phosphoserine at amino acid position 9. Klippel, A., Mertens, G., Patschinsky, T., Kahmann, R. EMBO J. (1988) [Pubmed]
  4. Mechanism of activation of simian virus 40 DNA replication by protein phosphatase 2A. Virshup, D.M., Russo, A.A., Kelly, T.J. Mol. Cell. Biol. (1992) [Pubmed]
  5. Plastidic pathway of serine biosynthesis. Molecular cloning and expression of 3-phosphoserine phosphatase from Arabidopsis thaliana. Ho, C.L., Noji, M., Saito, K. J. Biol. Chem. (1999) [Pubmed]
  6. Membrane interactions of a phosphomonoester elevated early in Alzheimer's disease. Mason, R.P., Trumbore, M.W., Pettegrew, J.W. Neurobiol. Aging (1995) [Pubmed]
  7. Identification of phosphoseryl residues in protamines from mature mammalian spermatozoa. Pirhonen, A., Linnala-Kankkunen, A., Mäenpää, P.H. Biol. Reprod. (1994) [Pubmed]
  8. Genetic and post-mortem mRNA analysis of the 14-3-3 genes that encode phosphoserine/threonine-binding regulatory proteins in schizophrenia and bipolar disorder. Wong, A.H., Likhodi, O., Trakalo, J., Yusuf, M., Sinha, A., Pato, C.N., Pato, M.T., Van Tol, H.H., Kennedy, J.L. Schizophr. Res. (2005) [Pubmed]
  9. 14-3-3epsilon is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome. Toyo-oka, K., Shionoya, A., Gambello, M.J., Cardoso, C., Leventer, R., Ward, H.L., Ayala, R., Tsai, L.H., Dobyns, W., Ledbetter, D., Hirotsune, S., Wynshaw-Boris, A. Nat. Genet. (2003) [Pubmed]
  10. The structural basis for 14-3-3:phosphopeptide binding specificity. Yaffe, M.B., Rittinger, K., Volinia, S., Caron, P.R., Aitken, A., Leffers, H., Gamblin, S.J., Smerdon, S.J., Cantley, L.C. Cell (1997) [Pubmed]
  11. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Muslin, A.J., Tanner, J.W., Allen, P.M., Shaw, A.S. Cell (1996) [Pubmed]
  12. Similar effects of platelet-derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins. Cooper, J.A., Bowen-Pope, D.F., Raines, E., Ross, R., Hunter, T. Cell (1982) [Pubmed]
  13. Phosphorylation of beta-glucuronidases from human normal liver and hepatoma by cAMP-dependent protein kinase. Ono, M., Taniguchi, N., Makita, A., Fujita, M., Sekiya, C., Namiki, M. J. Biol. Chem. (1988) [Pubmed]
  14. Characterization of the interaction of polyomavirus middle T antigen with type 2A protein phosphatase. Ulug, E.T., Cartwright, A.J., Courtneidge, S.A. J. Virol. (1992) [Pubmed]
  15. Homology of the NifS family of proteins to a new class of pyridoxal phosphate-dependent enzymes. Ouzounis, C., Sander, C. FEBS Lett. (1993) [Pubmed]
  16. Myxoma virus and Shope fibroma virus encode dual-specificity tyrosine/serine phosphatases which are essential for virus viability. Mossman, K., Ostergaard, H., Upton, C., McFadden, G. Virology (1995) [Pubmed]
  17. Detection of a transforming gene product in cells transformed by Moloney murine sarcoma virus. Papkoff, J., Verma, I.M., Hunter, T. Cell (1982) [Pubmed]
  18. High tyrosine kinase activity in normal nonproliferating cells. Tuy, F.P., Henry, J., Rosenfeld, C., Kahn, A. Nature (1983) [Pubmed]
  19. Modulation of inactivation properties of ca(v)2.2 channels by 14-3-3 proteins. Li, Y., Wu, Y., Zhou, Y. Neuron (2006) [Pubmed]
  20. CD3 gamma contains a phosphoserine-dependent di-leucine motif involved in down-regulation of the T cell receptor. Dietrich, J., Hou, X., Wegener, A.M., Geisler, C. EMBO J. (1994) [Pubmed]
  21. Effect of mutating the regulatory phosphoserine and conserved threonine on the activity of the expressed catalytic domain of Acanthamoeba myosin I heavy chain kinase. Szczepanowska, J., Ramachandran, U., Herring, C.J., Gruschus, J.M., Qin, J., Korn, E.D., Brzeska, H. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  22. Phosphorylation of human pro-urokinase on Ser138/303 impairs its receptor-dependent ability to promote myelomonocytic adherence and motility. Franco, P., Iaccarino, C., Chiaradonna, F., Brandazza, A., Iavarone, C., Mastronicola, M.R., Nolli, M.L., Stoppelli, M.P. J. Cell Biol. (1997) [Pubmed]
  23. Role of insulin receptor phosphorylation in the insulinomimetic effects of hydrogen peroxide. Hayes, G.R., Lockwood, D.H. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  24. Hormonal regulation of hormone-sensitive lipase in intact adipocytes: identification of phosphorylated sites and effects on the phosphorylation by lipolytic hormones and insulin. Strålfors, P., Björgell, P., Belfrage, P. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  25. Pleiotrophin regulates serine phosphorylation and the cellular distribution of beta-adducin through activation of protein kinase C. Pariser, H., Herradon, G., Ezquerra, L., Perez-Pinera, P., Deuel, T.F. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  26. Myelin-associated glycoprotein, a cell adhesion molecule of oligodendrocytes, is phosphorylated in brain. Edwards, A.M., Arquint, M., Braun, P.E., Roder, J.C., Dunn, R.J., Pawson, T., Bell, J.C. Mol. Cell. Biol. (1988) [Pubmed]
  27. Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Anderson, N.G., Maller, J.L., Tonks, N.K., Sturgill, T.W. Nature (1990) [Pubmed]
  28. Phosphorylation switches specific for the cardiac isoform of myosin binding protein-C: a modulator of cardiac contraction? Gautel, M., Zuffardi, O., Freiburg, A., Labeit, S. EMBO J. (1995) [Pubmed]
  29. Construction of plasmids for expression of Rous sarcoma virus transforming protein, p60src, in Escherichia coli. Gilmer, T.M., Parsons, J.T., Erikson, R.L. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  30. Rapid stimulation by insulin of a serine/threonine kinase in 3T3-L1 adipocytes that phosphorylates microtubule-associated protein 2 in vitro. Ray, L.B., Sturgill, T.W. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  31. Nephrin and CD2AP associate with phosphoinositide 3-OH kinase and stimulate AKT-dependent signaling. Huber, T.B., Hartleben, B., Kim, J., Schmidts, M., Schermer, B., Keil, A., Egger, L., Lecha, R.L., Borner, C., Pavenstädt, H., Shaw, A.S., Walz, G., Benzing, T. Mol. Cell. Biol. (2003) [Pubmed]
  32. A role for casein kinase 2alpha in the Drosophila circadian clock. Lin, J.M., Kilman, V.L., Keegan, K., Paddock, B., Emery-Le, M., Rosbash, M., Allada, R. Nature (2002) [Pubmed]
  33. SCFbeta-TRCP links Chk1 signaling to degradation of the Cdc25A protein phosphatase. Jin, J., Shirogane, T., Xu, L., Nalepa, G., Qin, J., Elledge, S.J., Harper, J.W. Genes Dev. (2003) [Pubmed]
  34. Crystal structure of a phosphorylated Smad2. Recognition of phosphoserine by the MH2 domain and insights on Smad function in TGF-beta signaling. Wu, J.W., Hu, M., Chai, J., Seoane, J., Huse, M., Li, C., Rigotti, D.J., Kyin, S., Muir, T.W., Fairman, R., Massagué, J., Shi, Y. Mol. Cell (2001) [Pubmed]
  35. SMG7 is a 14-3-3-like adaptor in the nonsense-mediated mRNA decay pathway. Fukuhara, N., Ebert, J., Unterholzner, L., Lindner, D., Izaurralde, E., Conti, E. Mol. Cell (2005) [Pubmed]
  36. A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates PDK1. Frödin, M., Jensen, C.J., Merienne, K., Gammeltoft, S. EMBO J. (2000) [Pubmed]
  37. Regulation of the phosphorylation of human pharyngeal cell proteins by group A streptococcal surface dehydrogenase: signal transduction between streptococci and pharyngeal cells. Pancholi, V., Fischetti, V.A. J. Exp. Med. (1997) [Pubmed]
  38. Strategies for nonradioactive methods in the localization of phosphorylated amino acids in proteins. Meyer, H.E., Eisermann, B., Heber, M., Hoffmann-Posorske, E., Korte, H., Weigt, C., Wegner, A., Hutton, T., Donella-Deana, A., Perich, J.W. FASEB J. (1993) [Pubmed]
  39. Lower inhibitor development in hemophilia A mice following administration of recombinant factor VIII-O-phospho-L-serine complex. Purohit, V.S., Ramani, K., Sarkar, R., Kazazian, H.H., Balasubramanian, S.V. J. Biol. Chem. (2005) [Pubmed]
  40. Identification of serine 24 as the unique site on the transferrin receptor phosphorylated by protein kinase C. Davis, R.J., Johnson, G.L., Kelleher, D.J., Anderson, J.K., Mole, J.E., Czech, M.P. J. Biol. Chem. (1986) [Pubmed]
  41. Phosphorylation of high mobility group protein 14 by casein kinase II. Walton, G.M., Spiess, J., Gill, G.N. J. Biol. Chem. (1985) [Pubmed]
 
WikiGenes - Universities