The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Hydroxyquinol     benzene-1,2,4-triol

Synonyms: Oxyhydrochinon, CPD-8130, NSC-2818, ACMC-1B10C, CCRIS 2987, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of C02814

 

High impact information on C02814

 

Chemical compound and disease context of C02814

 

Biological context of C02814

  • The possibility that 1,2,4-benzenetriol-induced DNA damage is one of the primary reactions in carcinogenesis induced by benzene is discussed [15].
  • This enzyme exhibits a highly restricted substrate specificity and is able to cleave hydroxyquinol (K(m) for hydroxyquinol as a substrate was 1.2 microM, V(max) 55 U/mg, K(cat) 57 s-1 and K(cat)/K(m) 47.5 microM s-1), 6-chloro- and 5-chlorohydroxyquinol [16].
  • XAS characterization of the active sites of novel intradiol ring-cleaving dioxygenases: hydroxyquinol and chlorocatechol dioxygenases [17].
  • The multistep pathway involves the degradation of I and subsequent intermediates by oxidation, reduction, and methylation reactions to yield the key intermediate 1,2,4-trihydroxybenzene (III) [18].
  • The finding directed us to PCR amplify a 3.2-kb fragment containing a gene cluster (tcpABC) from JMP134 by using primers designed from conserved regions of FADH2-utilizing monooxygenases and hydroxyquinol 1,2-dioxygenases [19].
 

Anatomical context of C02814

 

Associations of C02814 with other chemical compounds

 

Gene context of C02814

 

Analytical, diagnostic and therapeutic context of C02814

References

  1. DNA breakage induced by 1,2,4-benzenetriol: relative contributions of oxygen-derived active species and transition metal ions. Li, A.S., Bandy, B., Tsang, S., Davison, A.J. Free Radic. Biol. Med. (2001) [Pubmed]
  2. Complete dechlorination of tetrachlorohydroquinone by cell extracts of pentachlorophenol-induced Rhodococcus chlorophenolicus. Apajalahti, J.H., Salkinoja-Salonen, M.S. J. Bacteriol. (1987) [Pubmed]
  3. Biodegradation of p-nitrophenol via 1,2,4-benzenetriol by an Arthrobacter sp. Jain, R.K., Dreisbach, J.H., Spain, J.C. Appl. Environ. Microbiol. (1994) [Pubmed]
  4. Improvement of hypertension and vascular dysfunction by hydroxyhydroquinone-free coffee in a genetic model of hypertension. Suzuki, A., Fujii, A., Yamamoto, N., Yamamoto, M., Ohminami, H., Kameyama, A., Shibuya, Y., Nishizawa, Y., Tokimitsu, I., Saito, I. FEBS Lett. (2006) [Pubmed]
  5. Purification of hydroxyquinol 1,2-dioxygenase and maleylacetate reductase: the lower pathway of 2,4,5-trichlorophenoxyacetic acid metabolism by Burkholderia cepacia AC1100. Daubaras, D.L., Saido, K., Chakrabarty, A.M. Appl. Environ. Microbiol. (1996) [Pubmed]
  6. Benzene and its phenolic metabolites produce oxidative DNA damage in HL60 cells in vitro and in the bone marrow in vivo. Kolachana, P., Subrahmanyam, V.V., Meyer, K.B., Zhang, L., Smith, M.T. Cancer Res. (1993) [Pubmed]
  7. Sister chromatid exchange induction in human lymphocytes exposed to benzene and its metabolites in vitro. Erexson, G.L., Wilmer, J.L., Kligerman, A.D. Cancer Res. (1985) [Pubmed]
  8. Potential role of free radicals in benzene-induced myelotoxicity and leukemia. Subrahmanyam, V.V., Ross, D., Eastmond, D.A., Smith, M.T. Free Radic. Biol. Med. (1991) [Pubmed]
  9. Distinct actions of benzene and its metabolites on nitric oxide production by bone marrow leukocytes. Laskin, J.D., Rao, N.R., Punjabi, C.J., Laskin, D.L., Synder, R. J. Leukoc. Biol. (1995) [Pubmed]
  10. Purification and characterization of 6-chlorohydroxyquinol 1,2-dioxygenase from Streptomyces rochei 303: comparison with an analogous enzyme from Azotobacter sp. strain GP1. Zaborina, O., Latus, M., Eberspächer, J., Golovleva, L.A., Lingens, F. J. Bacteriol. (1995) [Pubmed]
  11. Desulfovibrio inopinatus, sp. nov., a new sulfate-reducing bacterium that degrades hydroxyhydroquinone. Reichenbecher, W., Schink, B. Arch. Microbiol. (1997) [Pubmed]
  12. Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of a p-nitrophenol 2-hydroxylase in a Gram-negative Serratia sp. strain DS001. Pakala, S.B., Gorla, P., Pinjari, A.B., Krovidi, R.K., Baru, R., Yanamandra, M., Merrick, M., Siddavattam, D. Appl. Microbiol. Biotechnol. (2007) [Pubmed]
  13. Cloning and sequence analysis of hydroxyquinol 1,2-dioxygenase gene in 2,4,6-trichlorophenol-degrading Ralstonia pickettii DTP0602 and characterization of its product. Hatta, T., Nakano, O., Imai, N., Takizawa, N., Kiyohara, H. J. Biosci. Bioeng. (1999) [Pubmed]
  14. Degradation of 3-nitrophenol by Pseudomonas putida B2 occurs via 1,2,4-benzenetriol. Meulenberg, R., Pepi, M., de Bont, J.A. Biodegradation (1996) [Pubmed]
  15. Human DNA damage induced by 1,2,4-benzenetriol, a benzene metabolite. Kawanishi, S., Inoue, S., Kawanishi, M. Cancer Res. (1989) [Pubmed]
  16. Characterization of an intradiol dioxygenase involved in the biodegradation of the chlorophenoxy herbicides 2,4-D and 2,4,5-T. Travkin, V.M., Jadan, A.P., Briganti, F., Scozzafava, A., Golovleva, L.A. FEBS Lett. (1997) [Pubmed]
  17. XAS characterization of the active sites of novel intradiol ring-cleaving dioxygenases: hydroxyquinol and chlorocatechol dioxygenases. Briganti, F., Mangani, S., Pedocchi, L., Scozzafava, A., Golovleva, L.A., Jadan, A.P., Solyanikova, I.P. FEBS Lett. (1998) [Pubmed]
  18. Degradation of 2,7-dichlorodibenzo-p-dioxin by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Valli, K., Wariishi, H., Gold, M.H. J. Bacteriol. (1992) [Pubmed]
  19. Genetic and biochemical characterization of a 2,4,6-trichlorophenol degradation pathway in Ralstonia eutropha JMP134. Louie, T.M., Webster, C.M., Xun, L. J. Bacteriol. (2002) [Pubmed]
  20. Epithelial cell proliferation in rat forestomach and glandular stomach mucosa induced by catechol and analogous dihydroxybenzenes. Shibata, M.A., Hirose, M., Yamada, M., Tatematsu, M., Uwagawa, S., Ito, N. Carcinogenesis (1990) [Pubmed]
  21. Phase II metabolism of benzene. Schrenk, D., Orzechowski, A., Schwarz, L.R., Snyder, R., Burchell, B., Ingelman-Sundberg, M., Bock, K.W. Environ. Health Perspect. (1996) [Pubmed]
  22. Benzene metabolite, 1,2,4-benzenetriol, induces micronuclei and oxidative DNA damage in human lymphocytes and HL60 cells. Zhang, L., Robertson, M.L., Kolachana, P., Davison, A.J., Smith, M.T. Environ. Mol. Mutagen. (1993) [Pubmed]
  23. Detection of 1,2,4-benzenetriol induced aneuploidy and microtubule disruption by fluorescence in situ hybridization and immunocytochemistry. Zhang, L., Venkatesh, P., Creek, M.L., Smith, M.T. Mutat. Res. (1994) [Pubmed]
  24. Benzene metabolism in rodent hepatocytes: role of sulphate conjugation. Orzechowski, A., Schwarz, L.R., Schwegler, U., Bock, K.W., Snyder, R., Schrenk, D. Xenobiotica (1995) [Pubmed]
  25. Properties of salicylate hydroxylase and hydroxyquinol 1,2-dioxygenase purified from Trichosporon cutaneum. Sze, I.S., Dagley, S. J. Bacteriol. (1984) [Pubmed]
  26. Characterization of the pyrogallol-phloroglucinol isomerase of Eubacterium oxidoreducens. Krumholz, L.R., Bryant, M.P. J. Bacteriol. (1988) [Pubmed]
  27. Effects of co-exposure to extremely low frequency (ELF) magnetic fields and benzene or benzene metabolites determined in vitro by the alkaline comet assay. Moretti, M., Villarini, M., Simonucci, S., Fatigoni, C., Scassellati-Sforzolini, G., Monarca, S., Pasquini, R., Angelucci, M., Strappini, M. Toxicol. Lett. (2005) [Pubmed]
  28. The metabolic pathway of 4-aminophenol in Burkholderia sp. strain AK-5 differs from that of aniline and aniline with C-4 substituents. Takenaka, S., Okugawa, S., Kadowaki, M., Murakami, S., Aoki, K. Appl. Environ. Microbiol. (2003) [Pubmed]
  29. Effects of benzene metabolites on receptor-mediated phagocytosis and cytoskeletal integrity in mouse peritoneal macrophages. Manning, B.W., Adams, D.O., Lewis, J.G. Toxicol. Appl. Pharmacol. (1994) [Pubmed]
  30. A combination of the micronucleus assay and a FISH technique for evaluation of the genotoxicity of 1,2,4-benzenetriol. Chung, H.W., Kang, S.J., Kim, S.Y. Mutat. Res. (2002) [Pubmed]
  31. 1,4-Benzoquinone reductase from basidiomycete Phanerochaete chrysosporium: spectral and kinetic analysis. Brock, B.J., Gold, M.H. Arch. Biochem. Biophys. (1996) [Pubmed]
  32. Crystallization and preliminary crystallographic analysis of the hydroxyquinol 1,2-dioxygenase from Nocardioides simplex 3E: a novel dioxygenase involved in the biodegradation of polychlorinated aromatic compounds. Benvenuti, M., Briganti, F., Scozzafava, A., Golovleva, L., Travkin, V.M., Mangani, S. Acta Crystallogr. D Biol. Crystallogr. (1999) [Pubmed]
  33. Isolation and characterization of a bacterial strain of the genus Ochrobactrum with methyl parathion mineralizing activity. Qiu, X.H., Bai, W.Q., Zhong, Q.Z., Li, M., He, F.Q., Li, B.T. J. Appl. Microbiol. (2006) [Pubmed]
  34. Analysis of glutathione and vitamin C effects. Pitarque, M., Creus, A., Marcos, R. ScientificWorldJournal (2006) [Pubmed]
 
WikiGenes - Universities