The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

tyrosin     2-amino-3-(4- hydroxyphenyl)propanoic acid

Synonyms: L-Tryosine, DL-Tyrosine, H-DL-Tyr-OH, Tyrosine, d-, Tyrosine, DL-, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of L-tyrosine

 

Psychiatry related information on L-tyrosine

 

High impact information on L-tyrosine

  • The observation that FCRL representatives are members of an ancient multigene family that share a common ancestor with the classical FCR is underscored by their linked genomic locations, gene structure, shared extracellular domain composition, and utilization of common cytoplasmic tyrosine-based signaling elements [11].
  • Data from knockout experiments in cell lines and mice have revealed distinct functions for the intracellular protein tyrosine kinases (Lyn, Syk, Btk) in BCR signaling and B cell development [12].
  • T lymphocytes also require activation of tyrosine kinases following T cell receptor (TCR) ligation for maximal stimulation [13].
  • The initiation of biochemical signal transduction following ligation of surface receptors with intrinsic cytoplasmic tyrosine kinase activity is common for many cell types [13].
  • The natural killer inhibitory receptors fulfill this function by recruiting the tyrosine phosphatase SHP-1 through a cytoplasmic immunoreceptor tyrosine-based inhibition motif [14].
 

Chemical compound and disease context of L-tyrosine

  • The gag-related proteins encoded by these avian sarcoma viruses (ASVs) were all associated with tyrosine-specific protein kinase activity when assayed in immune complexes and were phosphorylated at both tyrosine and serine residues in vivo [15].
  • The crystal structure of the conserved core of HIV-1 Nef has been determined in complex with the SH3 domain of a mutant Fyn tyrosine kinase (a single amino acid substitution, Arg-96 to isoleucine), to which Nef binds tightly [16].
  • The LSTRA Moloney murine leukaemia virus (M-MuLV)-induced thymoma cell line contains approximately 20-fold more phosphotyrosine in protein than do typical haematopoietic cell lines; this seems to result from the expression of an abnormally high level of a cellular tyrosine protein kinase termed p56tck (refs 3, 4) [17].
  • Treatment of chronic myeloid leukemia (CML) with the tyrosine kinase inhibitor imatinib represents a successful application of molecularly targeted cancer therapy [18].
  • The amino acid sequence preceding Tyr 315 includes a tract of six contiguous glutamic acid residues and bears some homology with that preceding the tyrosine phosphorylated in vivo in pp60v-src, the transforming protein of Rous sarcoma virus, and with a region in the polypeptide hormone, gastrin, preceding a tyrosine that is sulphated [19].
 

Biological context of L-tyrosine

  • The initial membrane proximal event triggered by the TCR is activation of protein tyrosine kinases with the resultant phosphorylation of cellular proteins [20].
  • The pathway uses a novel mechanism in which cytosolic latent transcription factors, known as signal transducers and activators of transcription (STATs), are tyrosine phosphorylated by Janus family tyrosine kinases (Jaks), allowing STAT protein dimerization and nuclear translocation [21].
  • Although lacking catalytic domains, all the receptors couple ligand binding to the rapid induction of protein tyrosine phosphorylation [22].
  • Although much has been learned regarding how these cytosolic tyrosine kinases are activated and recruited to the TCR complex, relatively little is understood about how these initial events are translated into transcriptional activation of genes that regulate cytokine production, cell proliferation, and cell death [13].
  • Development of drugs that can interfere with the catalytic functions of the nontransmembrane protein tyrosine kinases or that can disrupt critical interactions with regulatory molecules and/or substrates should find clinical applications in the treatment of allergic diseases, autoimmunity, transplantation rejection, and cancer [23].
 

Anatomical context of L-tyrosine

 

Associations of L-tyrosine with other chemical compounds

 

Gene context of L-tyrosine

  • CD22 signaling is mediated via interactions with a number of kinases and phosphatases that bind the cytoplasmic domain through phosphorylated tyrosine residues located within consensus TAM and TIM motifs [32].
  • Briefly, binding of GH to GH receptor induces receptor dimerization and activation of the tyrosine kinase JAK2 [33].
  • The discovery of Rous sarcoma virus (RSV) led to the identification of cellular Src (c-Src), a non-receptor tyrosine kinase, which has since been implicated in the development of numerous human cancers. c-Src has been found to be highly activated in colon cancers, particularly in those metastatic to the liver [34].
  • Epidermal growth factor (EGF) binding to its receptor causes rapid phosphorylation of the clathrin heavy chain at tyrosine 1477, which lies in a domain controlling clathrin assembly [35].
  • We find that FRS2 is myristylated and that this modification is essential for membrane localization, tyrosine phosphorylation, Grb2/Sos recruitment, and MAPK activation [36].
 

Analytical, diagnostic and therapeutic context of L-tyrosine

References

  1. Structure and organization of the two tRNATyr gene clusters on the E. coli chromosome. Rossi, J.J., Landy, A. Cell (1979) [Pubmed]
  2. Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Guo, W., Pylayeva, Y., Pepe, A., Yoshioka, T., Muller, W.J., Inghirami, G., Giancotti, F.G. Cell (2006) [Pubmed]
  3. Nucleotide sequence of Fujinami sarcoma virus: evolutionary relationship of its transforming gene with transforming genes of other sarcoma viruses. Shibuya, M., Hanafusa, H. Cell (1982) [Pubmed]
  4. p62(dok): a constitutively tyrosine-phosphorylated, GAP-associated protein in chronic myelogenous leukemia progenitor cells. Carpino, N., Wisniewski, D., Strife, A., Marshak, D., Kobayashi, R., Stillman, B., Clarkson, B. Cell (1997) [Pubmed]
  5. Evidence for liver disease preceding amino acid abnormalities in hereditary tyrosinemia. Hostetter, M.K., Levy, H.L., Winter, H.S., Knight, G.J., Haddow, J.E. N. Engl. J. Med. (1983) [Pubmed]
  6. Cord-blood tyrosine levels in the full-term phenylketonuric fetus and the "justification hypothesis". Scriver, C.R., Cole, D.E., Houghton, S.A., Levy, H.L., Grenier, A., Laberge, C. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  7. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Lambert, M.P., Barlow, A.K., Chromy, B.A., Edwards, C., Freed, R., Liosatos, M., Morgan, T.E., Rozovsky, I., Trommer, B., Viola, K.L., Wals, P., Zhang, C., Finch, C.E., Krafft, G.A., Klein, W.L. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  8. Reproducible nigral cell loss after systemic proteasomal inhibitor administration to rats. Zeng, B.Y., Bukhatwa, S., Hikima, A., Rose, S., Jenner, P. Ann. Neurol. (2006) [Pubmed]
  9. Rapid growth of invasive metastatic melanoma in carcinogen-treated hepatocyte growth factor/scatter factor-transgenic mice carrying an oncogenic CDK4 mutation. Tormo, D., Ferrer, A., Gaffal, E., Wenzel, J., Basner-Tschakarjan, E., Steitz, J., Heukamp, L.C., Gütgemann, I., Buettner, R., Malumbres, M., Barbacid, M., Merlino, G., Tüting, T. Am. J. Pathol. (2006) [Pubmed]
  10. An open trial of L-tyrosine in the treatment of attention deficit disorder, residual type. Reimherr, F.W., Wender, P.H., Wood, D.R., Ward, M. The American journal of psychiatry. (1987) [Pubmed]
  11. Fc receptor-like molecules. Davis, R.S. Annu. Rev. Immunol. (2007) [Pubmed]
  12. Genetic analysis of B cell antigen receptor signaling. Kurosaki, T. Annu. Rev. Immunol. (1999) [Pubmed]
  13. Integration of T cell receptor-dependent signaling pathways by adapter proteins. Clements, J.L., Boerth, N.J., Lee, J.R., Koretzky, G.A. Annu. Rev. Immunol. (1999) [Pubmed]
  14. Regulation of immune responses through inhibitory receptors. Long, E.O. Annu. Rev. Immunol. (1999) [Pubmed]
  15. Transforming proteins of some feline and avian sarcoma viruses are related structurally and functionally. Beemon, K. Cell (1981) [Pubmed]
  16. Crystal structure of the conserved core of HIV-1 Nef complexed with a Src family SH3 domain. Lee, C.H., Saksela, K., Mirza, U.A., Chait, B.T., Kuriyan, J. Cell (1996) [Pubmed]
  17. Expression of a new tyrosine protein kinase is stimulated by retrovirus promoter insertion. Voronova, A.F., Sefton, B.M. Nature (1986) [Pubmed]
  18. Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Roeder, I., Horn, M., Glauche, I., Hochhaus, A., Mueller, M.C., Loeffler, M. Nat. Med. (2006) [Pubmed]
  19. Transforming activity of polyoma virus middle-T antigen probed by site-directed mutagenesis. Oostra, B.A., Harvey, R., Ely, B.K., Markham, A.F., Smith, A.E. Nature (1983) [Pubmed]
  20. T cell antigen receptor signal transduction pathways. Cantrell, D. Annu. Rev. Immunol. (1996) [Pubmed]
  21. Jaks and STATs: biological implications. Leonard, W.J., O'Shea, J.J. Annu. Rev. Immunol. (1998) [Pubmed]
  22. Signaling through the hematopoietic cytokine receptors. Ihle, J.N., Witthuhn, B.A., Quelle, F.W., Yamamoto, K., Silvennoinen, O. Annu. Rev. Immunol. (1995) [Pubmed]
  23. Leukocyte protein tyrosine kinases: potential targets for drug discovery. Bolen, J.B., Brugge, J.S. Annu. Rev. Immunol. (1997) [Pubmed]
  24. Initiation and processing of signals from the B cell antigen receptor. Reth, M., Wienands, J. Annu. Rev. Immunol. (1997) [Pubmed]
  25. Genetic analysis of tyrosine kinase function in B cell development. Satterthwaite, A., Witte, O. Annu. Rev. Immunol. (1996) [Pubmed]
  26. NK cell receptors. Lanier, L.L. Annu. Rev. Immunol. (1998) [Pubmed]
  27. Treatment of carbamyl phosphate synthetase deficiency with keto analogues of essential amino acids. Batshaw, M., Brusilow, S., Walser, M. N. Engl. J. Med. (1975) [Pubmed]
  28. Enzymatically inactive p60c-src mutant with altered ATP-binding site is fully phosphorylated in its carboxy-terminal regulatory region. Jove, R., Kornbluth, S., Hanafusa, H. Cell (1987) [Pubmed]
  29. p120-Catenin and p190RhoGAP Regulate Cell-Cell Adhesion by Coordinating Antagonism between Rac and Rho. Wildenberg, G.A., Dohn, M.R., Carnahan, R.H., Davis, M.A., Lobdell, N.A., Settleman, J., Reynolds, A.B. Cell (2006) [Pubmed]
  30. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Canagarajah, B.J., Khokhlatchev, A., Cobb, M.H., Goldsmith, E.J. Cell (1997) [Pubmed]
  31. Vinculin: a cytoskeletal target of the transforming protein of Rous sarcoma virus. Sefton, B.M., Hunter, T., Ball, E.H., Singer, S.J. Cell (1981) [Pubmed]
  32. CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Tedder, T.F., Tuscano, J., Sato, S., Kehrl, J.H. Annu. Rev. Immunol. (1997) [Pubmed]
  33. Mechanism of signaling by growth hormone receptor. Argetsinger, L.S., Carter-Su, C. Physiol. Rev. (1996) [Pubmed]
  34. Activating SRC mutation in a subset of advanced human colon cancers. Irby, R.B., Mao, W., Coppola, D., Kang, J., Loubeau, J.M., Trudeau, W., Karl, R., Fujita, D.J., Jove, R., Yeatman, T.J. Nat. Genet. (1999) [Pubmed]
  35. EGF receptor signaling stimulates SRC kinase phosphorylation of clathrin, influencing clathrin redistribution and EGF uptake. Wilde, A., Beattie, E.C., Lem, L., Riethof, D.A., Liu, S.H., Mobley, W.C., Soriano, P., Brodsky, F.M. Cell (1999) [Pubmed]
  36. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Kouhara, H., Hadari, Y.R., Spivak-Kroizman, T., Schilling, J., Bar-Sagi, D., Lax, I., Schlessinger, J. Cell (1997) [Pubmed]
  37. Impaired expression of the thrombopoietin receptor by platelets from patients with polycythemia vera. Moliterno, A.R., Hankins, W.D., Spivak, J.L. N. Engl. J. Med. (1998) [Pubmed]
  38. Local mutagenesis of Rous sarcoma virus: the major sites of tyrosine and serine phosphorylation of pp60src are dispensable for transformation. Cross, F.R., Hanafusa, H. Cell (1983) [Pubmed]
  39. Similar effects of platelet-derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins. Cooper, J.A., Bowen-Pope, D.F., Raines, E., Ross, R., Hunter, T. Cell (1982) [Pubmed]
  40. Modulation of GABAA receptors by tyrosine phosphorylation. Moss, S.J., Gorrie, G.H., Amato, A., Smart, T.G. Nature (1995) [Pubmed]
 
WikiGenes - Universities