The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Reminertant     2-[[1-(7-chloroquinolin-4- yl)-5-(2,6...

Synonyms: Meclinertant, CHEMBL506981, cc-385, SureCN1650932, QC-4586, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of SR-48692

 

Psychiatry related information on SR-48692

  • The decreased amphetamine-induced sensitization in chronically SR 48692-treated rats did not appear to result from an influence on basal locomotor activity, as chronic SR 48692 treatment did not modify the spontaneous locomotor activity developed in response to mild stresses (experiment 2) [6].
  • Daily administration of SR 48692 (1 mg/kg, IP) throughout the amphetamine regimen (day 1 to day 14) almost completely blocked the sensitized locomotor response to amphetamine without affecting stereotyped behaviors (experiment 1) [6].
 

High impact information on SR-48692

 

Chemical compound and disease context of SR-48692

 

Biological context of SR-48692

 

Anatomical context of SR-48692

 

Associations of SR-48692 with other chemical compounds

  • Two G-protein-coupled receptors for the tridecapeptide neurotensin (NT) have been identified and cloned in mammalian brain: a high-affinity (Kd = 0.3 nM) receptor, sensitive to the antagonist SR 48692 but insensitive to levocabastine, and a lower-affinity (Kd = 2-4 nM) receptor, sensitive to levocabastine but with poor affinity for SR 48692 [9].
  • NT was able to increase phosphoinositide turnover in these cells, and this effect was blocked by SR 48692 [20].
  • OBJECTIVE: Four studies using identical protocols evaluated the safety and efficacy of four novel, evidence-based targets for antipsychotic agents: a neurokinin (NK(3)) antagonist (SR142801), a serotonin 2A/2C (5-HT(2A/2C)) antagonist (SR46349B), a central cannabinoid (CB(1)) antagonist (SR141716), and a neurotensin (NTS(1)) antagonist (SR48692) [21].
  • Results showed that all compounds decreased defensive threat/attack, but only diazepam and, to a lesser extent, SR48692 significantly modified risk assessment or flight [22].
  • The potentiating effects of SR 48692 were positively related to the stimulation frequency (from 6 to 20 Hz) and to the dose of haloperidol (from 12.5 to 50 micrograms/kg) and were abolished after prior kainic acid lesion (1 microgram/1 microliter) of the nucleus accumbens [23].
 

Gene context of SR-48692

  • Activation of MAPK and induction of Krox-24 were both prevented by the NTR antagonist SR 48692, confirming the specific action on NTR [24].
  • Competition binding studies of neurotensin with SR142948 and SR48692, two nonpeptidic antagonists of hNT1-R, indicated that the yeast-produced recombinant receptor displayed the same pharmacological properties as hNT1-R expressed in mammalian cells [25].
  • Pretreatment with SR48692 (3 and 10 mg/kg) reduced the number of Fos-like immunoreactive cells produced by the combined administration of SKF38393 (20 mg/kg) and quinpirole (1 mg/kg) in the caudate-putamen, nucleus accumbens, globus pallidus and ventral pallidum [26].
  • In situ hybridization experiments in the caudate-putamen indicated that SR48692 (10 mg/kg) markedly reduced zif268 mRNA labelling produced by SKF38393 plus quinpirole in cells not expressing enkephalin mRNA, but was unable to affect the concomitant decrease of zif268 mRNA labelling in enkephalin-positive cells [26].
  • In addition, the activities of janus activated kinase 2 (JAK2)-signal transducer and activated transcription 1 (STAT1) and the migration capacity of macrophage were increased as the result of costimulation of neurotensin with LPS and IFNgamma, and pretreatment of either U73122 or SR48692 attenuated these phenomenon [27].
 

Analytical, diagnostic and therapeutic context of SR-48692

  • We also show that microinjection of NT or the NTR1-selective agonist PD149163 in the RVM both produce dose-dependent antinociception in the tail-flick test that is blocked by the NTR1-selective antagonist SR48692 [28].
  • Here, we show that, in contrast to its antagonistic action on NT-induced hypomotility in the rat, SR 48692 failed to antagonize NT-induced hypothermia and analgesia in the mouse and rat [29].
  • The inhibitory action of the D2 agonist was restored when SR48692 (100 nM) was added to the perfusion medium [30].
  • 4. When SR 48692 was injected intradermally (5 pmol in 50 microliters) into anaesthetized rats, 15 min before the intradermal injection of NT, it reduced the effect of NT on vascular permeability [18].
  • Subcutaneous injection of SR 48692 (0.2 mg/kg) significantly decreased extracellular striatal GABA levels, with peak decreases occurring 2-3 h post-injection [31].

References

  1. Biochemical and pharmacological profile of a potent and selective nonpeptide antagonist of the neurotensin receptor. Gully, D., Canton, M., Boigegrain, R., Jeanjean, F., Molimard, J.C., Poncelet, M., Gueudet, C., Heaulme, M., Leyris, R., Brouard, A. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  2. Neurotensin and a non-peptide neurotensin receptor antagonist control human colon cancer cell growth in cell culture and in cells xenografted into nude mice. Maoret, J.J., Anini, Y., Rouyer-Fessard, C., Gully, D., Laburthe, M. Int. J. Cancer (1999) [Pubmed]
  3. Effects of SR 48692, a selective non-peptide neurotensin receptor antagonist, on two dopamine-dependent behavioural responses in mice and rats. Poncelet, M., Souilhac, J., Gueudet, C., Terranova, J.P., Gully, D., Le Fur, G., Soubrié, P. Psychopharmacology (Berl.) (1994) [Pubmed]
  4. Central administration of the neurotensin receptor antagonist SR48692 attenuates vacuous chewing movements in a rodent model of tardive dyskinesia. McCormick, S.E., Stoessl, A.J. Neuroscience (2003) [Pubmed]
  5. SR48692 is a neurotensin receptor antagonist which inhibits the growth of small cell lung cancer cells. Moody, T.W., Chiles, J., Casibang, M., Moody, E., Chan, D., Davis, T.P. Peptides (2001) [Pubmed]
  6. Chronic blockade of neurotensin receptors strongly reduces sensitized, but not acute, behavioral response to D-amphetamine. Panayi, F., Dorso, E., Lambás-Señas, L., Renaud, B., Scarna, H., Bérod, A. Neuropsychopharmacology (2002) [Pubmed]
  7. A neurotensin antagonist, SR 48692, inhibits colonic responses to immobilization stress in rats. Castagliuolo, I., Leeman, S.E., Bartolak-Suki, E., Nikulasson, S., Qiu, B., Carraway, R.E., Pothoulakis, C. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  8. Neurotensin and the serotonergic system. Jolas, T., Aghajanian, G.K. Prog. Neurobiol. (1997) [Pubmed]
  9. Differential binding profile and internalization process of neurotensin via neuronal and glial receptors. Nouel, D., Faure, M.P., St Pierre, J.A., Alonso, R., Quirion, R., Beaudet, A. J. Neurosci. (1997) [Pubmed]
  10. Blockade of neurotensin receptors affects differently hypo-locomotion and catalepsy induced by haloperidol in mice. Casti, P., Marchese, G., Casu, G., Ruiu, S., Pani, L. Neuropharmacology (2004) [Pubmed]
  11. Biochemical and pharmacological activities of SR 142948A, a new potent neurotensin receptor antagonist. Gully, D., Labeeuw, B., Boigegrain, R., Oury-Donat, F., Bachy, A., Poncelet, M., Steinberg, R., Suaud-Chagny, M.F., Santucci, V., Vita, N., Pecceu, F., Labbé-Jullié, C., Kitabgi, P., Soubrié, P., Le Fur, G., Maffrand, J.P. J. Pharmacol. Exp. Ther. (1997) [Pubmed]
  12. Participation of central descending nociceptive facilitatory systems in secondary hyperalgesia produced by mustard oil. Urban, M.O., Jiang, M.C., Gebhart, G.F. Brain Res. (1996) [Pubmed]
  13. Mutagenesis and modeling of the neurotensin receptor NTR1. Identification of residues that are critical for binding SR 48692, a nonpeptide neurotensin antagonist. Labbé-Jullié, C., Barroso, S., Nicolas-Etève, D., Reversat, J.L., Botto, J.M., Mazella, J., Bernassau, J.M., Kitabgi, P. J. Biol. Chem. (1998) [Pubmed]
  14. Promotion by SR 48692 of gastric emptying and defaecation in rats suggesting a role of endogenous neurotensin. Croci, T., Giudice, A., Manara, L., Gully, D., Le Fur, G. Br. J. Pharmacol. (1995) [Pubmed]
  15. Regulation of DARPP-32 Thr75 phosphorylation by neurotensin in neostriatal neurons: involvement of glutamate signalling. Matsuyama, S., Fukui, R., Higashi, H., Nishi, A. Eur. J. Neurosci. (2003) [Pubmed]
  16. Endogenous neurotensin down-regulates dopamine efflux in the nucleus accumbens as revealed by SR-142948A, a selective neurotensin receptor antagonist. Brun, P., Leonetti, M., Sotty, F., Steinberg, R., Soubrié, P., Renaud, B., Suaud-Chagny, M.F. J. Neurochem. (2001) [Pubmed]
  17. Repeated administration of the neurotensin receptor antagonist SR 48692 differentially regulates mesocortical and mesolimbic dopaminergic systems. Azzi, M., Betancur, C., Sillaber, I., Spangel, R., Rostène, W., Bérod, A. J. Neurochem. (1998) [Pubmed]
  18. Blockade of mast cell histamine secretion in response to neurotensin by SR 48692, a nonpeptide antagonist of the neurotensin brain receptor. Miller, L.A., Cochrane, D.E., Carraway, R.E., Feldberg, R.S. Br. J. Pharmacol. (1995) [Pubmed]
  19. Effect of the nonpeptide neurotensin antagonist, SR 48692, and two enantiomeric analogs, SR 48527 and SR 49711, on neurotensin binding and contractile responses in guinea pig ileum and colon. Labbé-Jullié, C., Deschaintres, S., Gully, D., Le Fur, G., Kitabgi, P. J. Pharmacol. Exp. Ther. (1994) [Pubmed]
  20. Human umbilical vein endothelial cells express high affinity neurotensin receptors coupled to intracellular calcium release. Schaeffer, P., Laplace, M.C., Savi, P., Pflieger, A.M., Gully, D., Herbert, J.M. J. Biol. Chem. (1995) [Pubmed]
  21. Placebo-controlled evaluation of four novel compounds for the treatment of schizophrenia and schizoaffective disorder. Meltzer, H.Y., Arvanitis, L., Bauer, D., Rein, W. The American journal of psychiatry. (2004) [Pubmed]
  22. Characterization of the profile of neurokinin-2 and neurotensin receptor antagonists in the mouse defense test battery. Griebel, G., Moindrot, N., Aliaga, C., Simiand, J., Soubrié, P. Neuroscience and biobehavioral reviews. (2001) [Pubmed]
  23. Blockade of neurotensin receptor by SR 48692 potentiates the facilitatory effect of haloperidol on the evoked in vivo dopamine release in the rat nucleus accumbens. Brun, P., Steinberg, R., Le Fur, G., Soubrié, P. J. Neurochem. (1995) [Pubmed]
  24. Activation of mitogen-activated protein kinase couples neurotensin receptor stimulation to induction of the primary response gene Krox-24. Poinot-Chazel, C., Portier, M., Bouaboula, M., Vita, N., Pecceu, F., Gully, D., Monroe, J.G., Maffrand, J.P., Le Fur, G., Casellas, P. Biochem. J. (1996) [Pubmed]
  25. Neurotensin induces mating in Saccharomyces cerevisiae cells that express human neurotensin receptor type 1 in place of the endogenous pheromone receptor. Leplatois, P., Josse, A., Guillemot, M., Febvre, M., Vita, N., Ferrara, P., Loison, G. Eur. J. Biochem. (2001) [Pubmed]
  26. Blockade of neurotensin receptors suppresses the dopamine D1/D2 synergism on immediate early gene expression in the rat brain. Alonso, R., Gnanadicom, H., Fréchin, N., Fournier, M., Le Fur, G., Soubrié, P. Eur. J. Neurosci. (1999) [Pubmed]
  27. Neurotensin enhances nitric oxide generation via the JAK2-STAT1 pathway in murine macrophage Raw264.7 cells during costimulation with LPS and IFNgamma. Kim, H.S., Yumkham, S., Choi, J.H., Lee, S.H., Kim, T.H., Ryu, S.H., Suh, P.G. Neuropeptides (2006) [Pubmed]
  28. Neurotensin activation of the NTR1 on spinally-projecting serotonergic neurons in the rostral ventromedial medulla is antinociceptive. Buhler, A.V., Choi, J., Proudfit, H.K., Gebhart, G.F. Pain (2005) [Pubmed]
  29. The nonpeptide neurotensin antagonist, SR 48692, used as a tool to reveal putative neurotensin receptor subtypes. Dubuc, I., Costentin, J., Terranova, J.P., Barnouin, M.C., Soubrié, P., Le Fur, G., Rostène, W., Kitabgi, P. Br. J. Pharmacol. (1994) [Pubmed]
  30. Differential effects of intrastriatal neurotensin(1-13) and neurotensin(8-13) on striatal dopamine and pallidal GABA release. A dual-probe microdialysis study in the awake rat. Ferraro, L., O'Connor, W.T., Antonelli, T., Fuxe, K., Tanganelli, S. Eur. J. Neurosci. (1997) [Pubmed]
  31. The neurotensin receptor antagonist SR 48692 decreases extracellular striatal GABA in rats. Chapman, M.A., See, R.E. Brain Res. (1996) [Pubmed]
 
WikiGenes - Universities