The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Acetylcarnitine, (R)-Isomer     (3S)-3-acetyloxy-4- trimethylammonio-butanoate

Synonyms: Nicetile, LS-17076, ZINC03644164, AKOS015911248, AC1L2BM0, ...
This record was replaced with 18231.
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of [(2S)-2-acetyloxy-3-carboxy-propyl]-trimethyl-azanium

 

Psychiatry related information on [(2S)-2-acetyloxy-3-carboxy-propyl]-trimethyl-azanium

 

High impact information on [(2S)-2-acetyloxy-3-carboxy-propyl]-trimethyl-azanium

  • Administration of acetyl-L-carnitine (ALCAR) to mutant mice significantly recovers slow theta and Glo1 overexpression [11].
  • Short-term prevention (4 mo) with acetyl-L-carnitine had no effects on nerve polyols, but corrected the Na+/K+ -ATPase defect and was associated with 63% prevention of the nerve conduction defect and complete prevention of structural changes [1].
  • Acetyl-L-carnitine treatment promoted nerve fiber regeneration, which was increased two-fold compared to nontreated diabetic rats [1].
  • These results demonstrate that acetyl-L-carnitine has a preventive effect on the acute Na+/- K+_ATPase defect and a preventive and corrective effect on PGE1 in chronically diabetic nerve associated with improvements of nerve conduction velocity and pathologic changes [1].
  • With exhaustive exercise, the skeletal muscle acetylcarnitine and short-chain acylcarnitine contents increased by a factor of three to four both under normoxic and hypoxic conditions [12].
 

Chemical compound and disease context of [(2S)-2-acetyloxy-3-carboxy-propyl]-trimethyl-azanium

 

Biological context of [(2S)-2-acetyloxy-3-carboxy-propyl]-trimethyl-azanium

  • Feeding ALCAR in combination with LA increased metabolism and lowered oxidative stress more than either compound alone [18].
  • Feeding old rats LA or LA plus ALCAR inhibited lipid peroxidation but did not decrease iron and copper levels [19].
  • ALCAR increases cellular oxygen consumption, which declines with age, to the level of young rats [20].
  • The kinetics of CAT were analyzed by using the brains of young and old rats and of old rats supplemented for 7 weeks with the CAT substrate acetyl-l-carnitine (ALCAR) and/or the mitochondrial antioxidant precursor R-alpha-lipoic acid (LA) [19].
  • In the former cases, the size of the H' reflex evoked by the same conditioning H1 discharge was further depressed after L-acetylcarnitine, pointing to a potentiating effect of the drug on Renshaw cells; in the latter cases no such effect was seen [4].
 

Anatomical context of [(2S)-2-acetyloxy-3-carboxy-propyl]-trimethyl-azanium

 

Associations of [(2S)-2-acetyloxy-3-carboxy-propyl]-trimethyl-azanium with other chemical compounds

 

Gene context of [(2S)-2-acetyloxy-3-carboxy-propyl]-trimethyl-azanium

  • These studies explore the relationships between COX-mediated and acetyl-L-carnitine (ALC)-sensitive defects that contribute to functional, metabolic, and vascular abnormalities of EDN [28].
  • A treatment of spf/spf breeding females with acetyl-L-carnitine, at a dose of 1.5 mM in drinking water, starting from day 1 of conception, resulted in a significant restoration of ChAT activity levels in some brain regions of the spf/Y offspring [29].
  • However, H3-K4 methylation remained extremely low, in accordance with the observation that ALC alone does not reactivate the FMR1 gene [30].
  • Treatment with acetyl-L-carnitine (ALC), a compound that reduces the in vitro expression of the FRAXA fragile site without affecting DNA methylation, caused an increase of H3 and H4 acetylation [30].
  • The formation of acetylcarnitine directly correlates with the CPT-II activity [31].
 

Analytical, diagnostic and therapeutic context of [(2S)-2-acetyloxy-3-carboxy-propyl]-trimethyl-azanium

References

  1. Primary preventive and secondary interventionary effects of acetyl-L-carnitine on diabetic neuropathy in the bio-breeding Worcester rat. Sima, A.A., Ristic, H., Merry, A., Kamijo, M., Lattimer, S.A., Stevens, M.J., Greene, D.A. J. Clin. Invest. (1996) [Pubmed]
  2. Carnitine-related alterations in patients with intermittent claudication: indication for a focused carnitine therapy. Brevetti, G., di Lisa, F., Perna, S., Menabó, R., Barbato, R., Martone, V.D., Siliprandi, N. Circulation (1996) [Pubmed]
  3. Acetyl-L-carnitine corrects electroretinographic deficits in experimental diabetes. Lowitt, S., Malone, J.I., Salem, A., Kozak, W.M., Orfalian, Z. Diabetes (1993) [Pubmed]
  4. Involvement of spinal recurrent inhibition in spasticity. Further insight into the regulation of Renshaw cell activity. Mazzocchio, R., Rossi, A. Brain (1997) [Pubmed]
  5. Prevention of postischemic canine neurological injury through potentiation of brain energy metabolism by acetyl-L-carnitine. Rosenthal, R.E., Williams, R., Bogaert, Y.E., Getson, P.R., Fiskum, G. Stroke (1992) [Pubmed]
  6. Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-alpha -lipoic acid. Liu, J., Head, E., Gharib, A.M., Yuan, W., Ingersoll, R.T., Hagen, T.M., Cotman, C.W., Ames, B.N. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  7. Carnitine acetyltransferase activity in the human brain and its microvessels is decreased in Alzheimer's disease. Kalaria, R.N., Harik, S.I. Ann. Neurol. (1992) [Pubmed]
  8. Acetyl-L-carnitine physical-chemical, metabolic, and therapeutic properties: relevance for its mode of action in Alzheimer's disease and geriatric depression. Pettegrew, J.W., Levine, J., McClure, R.J. Mol. Psychiatry (2000) [Pubmed]
  9. Effects of long-term acetyl-L-carnitine administration in rats--II: Protection against the disrupting effect of stress on the acquisition of appetitive behavior. Masi, F., Leggio, B., Nanni, G., Scheggi, S., De Montis, M.G., Tagliamonte, A., Grappi, S., Gambarana, C. Neuropsychopharmacology (2003) [Pubmed]
  10. Acetylcarnitine induces heme oxygenase in rat astrocytes and protects against oxidative stress: involvement of the transcription factor Nrf2. Calabrese, V., Ravagna, A., Colombrita, C., Scapagnini, G., Guagliano, E., Calvani, M., Butterfield, D.A., Giuffrida Stella, A.M. J. Neurosci. Res. (2005) [Pubmed]
  11. Deficiency in short-chain fatty acid beta-oxidation affects theta oscillations during sleep. Tafti, M., Petit, B., Chollet, D., Neidhart, E., de Bilbao, F., Kiss, J.Z., Wood, P.A., Franken, P. Nat. Genet. (2003) [Pubmed]
  12. Relationship between the coenzyme A and the carnitine pools in human skeletal muscle at rest and after exhaustive exercise under normoxic and acutely hypoxic conditions. Friolet, R., Hoppeler, H., Krähenbühl, S. J. Clin. Invest. (1994) [Pubmed]
  13. Involvement of PI3K/PKG/ERK1/2 signaling pathways in cortical neurons to trigger protection by cotreatment of acetyl-L-carnitine and alpha-lipoic acid against HNE-mediated oxidative stress and neurotoxicity: Implications for Alzheimer's disease. Mohmmad Abdul, H., Butterfield, D.A. Free Radic. Biol. Med. (2007) [Pubmed]
  14. A 1-year multicenter placebo-controlled study of acetyl-L-carnitine in patients with Alzheimer's disease. Thal, L.J., Carta, A., Clarke, W.R., Ferris, S.H., Friedland, R.P., Petersen, R.C., Pettegrew, J.W., Pfeiffer, E., Raskind, M.A., Sano, M., Tuszynski, M.H., Woolson, R.F. Neurology (1996) [Pubmed]
  15. Acetyl-L-carnitine supplementation restores decreased tissue carnitine levels and impaired lipid metabolism in aged rats. Tanaka, Y., Sasaki, R., Fukui, F., Waki, H., Kawabata, T., Okazaki, M., Hasegawa, K., Ando, S. J. Lipid Res. (2004) [Pubmed]
  16. Acetyl-L-carnitine protects striatal neurons against in vitro ischemia: the role of endogenous acetylcholine. Picconi, B., Barone, I., Pisani, A., Nicolai, R., Benatti, P., Bernardi, G., Calvani, M., Calabresi, P. Neuropharmacology (2006) [Pubmed]
  17. Acetyl-L-carnitine cytoprotection against 1-methyl-4-phenylpyridinium toxicity in neuroblastoma cells. Mazzio, E., Yoon, K.J., Soliman, K.F. Biochem. Pharmacol. (2003) [Pubmed]
  18. Feeding acetyl-L-carnitine and lipoic acid to old rats significantly improves metabolic function while decreasing oxidative stress. Hagen, T.M., Liu, J., Lykkesfeldt, J., Wehr, C.M., Ingersoll, R.T., Vinarsky, V., Bartholomew, J.C., Ames, B.N. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  19. Age-associated mitochondrial oxidative decay: improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-L- carnitine and/or R-alpha -lipoic acid. Liu, J., Killilea, D.W., Ames, B.N. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  20. Acetyl-L-carnitine fed to old rats partially restores mitochondrial function and ambulatory activity. Hagen, T.M., Ingersoll, R.T., Wehr, C.M., Lykkesfeldt, J., Vinarsky, V., Bartholomew, J.C., Song, M.H., Ames, B.N. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  21. In vivo studies of intestinal carnitine absorption in rats. Gudjonsson, H., Li, B.U., Shug, A.L., Olsen, W.A. Gastroenterology (1985) [Pubmed]
  22. Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p. van Roermund, C.W., Hettema, E.H., van den Berg, M., Tabak, H.F., Wanders, R.J. EMBO J. (1999) [Pubmed]
  23. Quantitation of the efflux of acylcarnitines from rat heart, brain, and liver mitochondria. Lysiak, W., Toth, P.P., Suelter, C.H., Bieber, L.L. J. Biol. Chem. (1986) [Pubmed]
  24. Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion and epidermal ornithine decarboxylase activity in mouse skin by palmitoylcarnitine. Nakadate, T., Yamamoto, S., Aizu, E., Kato, R. Cancer Res. (1986) [Pubmed]
  25. Equilibrium constants of the reactions of choline acetyltransferase, carnitine acetyltransferase, and acetylcholinesterase under physiological conditions. Pieklik, J.R., Guynn, R.W. J. Biol. Chem. (1975) [Pubmed]
  26. Redesign of carnitine acetyltransferase specificity by protein engineering. Cordente, A.G., López-Viñas, E., Vázquez, M.I., Swiegers, J.H., Pretorius, I.S., Gómez-Puertas, P., Hegardt, F.G., Asins, G., Serra, D. J. Biol. Chem. (2004) [Pubmed]
  27. L-carnitine and acetyl-L-carnitine status during hemodialysis with acetate in humans: a kinetic analysis. Jackson, J.M., Lee, H.A. Am. J. Clin. Nutr. (1996) [Pubmed]
  28. Dissection of metabolic, vascular, and nerve conduction interrelationships in experimental diabetic neuropathy by cyclooxygenase inhibition and acetyl-L-carnitine administration. Pop-Busui, R., Marinescu, V., Van Huysen, C., Li, F., Sullivan, K., Greene, D.A., Larkin, D., Stevens, M.J. Diabetes (2002) [Pubmed]
  29. Developmental deficiency of the cholinergic system in congenitally hyperammonemic spf mice: effect of acetyl-L-carnitine. Ratnakumari, L., Qureshi, I.A., Maysinger, D., Butterworth, R.F. J. Pharmacol. Exp. Ther. (1995) [Pubmed]
  30. Differential epigenetic modifications in the FMR1 gene of the fragile X syndrome after reactivating pharmacological treatments. Tabolacci, E., Pietrobono, R., Moscato, U., Oostra, B.A., Chiurazzi, P., Neri, G. Eur. J. Hum. Genet. (2005) [Pubmed]
  31. Tandem mass spectrometric assay for the determination of carnitine palmitoyltransferase II activity in muscle tissue. Rettinger, A., Gempel, K., Hofmann, S., Gerbitz, K.D., Bauer, M.F. Anal. Biochem. (2002) [Pubmed]
  32. Inhibition of postcardiac arrest brain protein oxidation by acetyl-L-carnitine. Liu, Y., Rosenthal, R.E., Starke-Reed, P., Fiskum, G. Free Radic. Biol. Med. (1993) [Pubmed]
  33. L-Acetylcarnitine induces analgesia by selectively up-regulating mGlu2 metabotropic glutamate receptors. Chiechio, S., Caricasole, A., Barletta, E., Storto, M., Catania, M.V., Copani, A., Vertechy, M., Nicolai, R., Calvani, M., Melchiorri, D., Nicoletti, F. Mol. Pharmacol. (2002) [Pubmed]
  34. Functional relevance of carnitine transporter OCTN2 to brain distribution of L-carnitine and acetyl-L-carnitine across the blood-brain barrier. Kido, Y., Tamai, I., Ohnari, A., Sai, Y., Kagami, T., Nezu, J., Nikaido, H., Hashimoto, N., Asano, M., Tsuji, A. J. Neurochem. (2001) [Pubmed]
 
WikiGenes - Universities