The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Heptose     2,3,4,5,6,7- hexahydroxyheptanal

Synonyms: Glucoheptose, D-Mannoheptose, d-Glucoheptose, AGN-PC-000NUI, NSC-1224, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of NSC2555

 

High impact information on NSC2555

 

Chemical compound and disease context of NSC2555

 

Biological context of NSC2555

  • Comparison of this OS structure with those determined previously indicates the presence of a new glycosylation pathway for gonococcal OS biosynthesis: elongation of a GlcNAc-linked heptose, in contrast to elongation of the other heptose by sequential addition of glycoses which results in the antigenic similarity with human glycolipids [16].
  • These data do not rule out the possibility that D-glucose phosphorylation is more resistant to D-mannoheptulose in beta cells incubated at a low than a high concentration, independently of any difference in the intracellular concentration of the heptose [17].
  • Structural analysis of LPS showed that a major site of acetylation was the distal heptose (HepIII) of the LPS inner-core [18].
  • ColB2 transfer was more strongly affected by mutations in the heptose II-heptose III region of the LPS (rfaF) whereas R100-1 was not strongly affected by any of the rfa mutations tested. ompA but not rfa mutations further decreased the mating efficiency of an F plasmid carrying a mutation in the mating-pair stabilization protein TraN [19].
  • 8. These released oligosaccharides contained a common heptose trisaccharide core structure with anhydro-KDO at the reducing terminus, which arises as an artifact of the hydrolysis procedure by beta-elimination of a phosphate group from the 4-position of KDO [20].
 

Anatomical context of NSC2555

  • This heptose is taken up more efficiently by hepatocytes and islet cells, than by erythrocytes, parotid cells, acinar pancreatic cells or tumoural islet cells of either the RINm5F or INS-1 line [21].
  • These investigations also highlighted the highly phosphorylated nature of these complex cell membrane components, where the heptose residues of the core oligosaccharide can bear up to six phosphate groups [22].
  • Deep rough strains containing only heptose I or heptose I and II in the rough core were completely eliminated after 6 h, whereas more superficial rough strains containing additional core sugars could be detected in low numbers (10(4) colony-forming units/g of tissue) for at least 7 days postinjection [23].
  • Endotoxic glycolipids ( ReGl ) extracted from the whole cells (WC) and cell walls of heptose-less Re mutant of Salmonella minnesota with hot phenol-water (PW), phenol-chloroform-petroleum ether (PCP), and chloroform-methanol (CM) were analyzed chemically and examined with an electron microscope [24].
  • In the erythrocytes and parotid cells, the intracellular distribution space of the heptose (0.1 mM) represented only about 1 and 13%, respectively, of the intracellular 3HOH space [25].
 

Associations of NSC2555 with other chemical compounds

  • Mass spectrometry analysis of LOS from strain R2866 indicated that the primary oligosaccharide glycoform contained four heptose and four hexose residues, while that of R3392 contained four heptose and three hexose residues [26].
  • Upon acid hydrolysis, some of the components detected were hexosamines (7.0%), neutral and reducing sugars (50.5%), heptose (6.4%), 2-keto-3-deoxyoctonate (0.8%), lipid A (21.0%), and phosphorus (1.7%) [27].
  • Analysis of the methylated polysaccharide by gas-liquid chromatography and mass spectrometry showed that it had a branched structure with glucose and heptose residues primarily appearing at the nonreducing-end groups [28].
  • Under the mild conditions of hydrolysis with methanolic hydrogen chloride, a 7-O-carbamoyl substituent was observed on the second heptose residue [29].
  • GmhX is a novel enzyme required for the incorporation of L-glycero-D-manno-heptose into meningococcal LOS, and is a candidate for the 2-D-glycero-manno-heptose phosphatase of the heptose biosynthesis pathway [30].
 

Gene context of NSC2555

  • By selecting for simultaneous resistance to phages K3 and U3, we obtained mutants defective in rfaC (biosynthesis of core heptose) and in rfaP (phosphorylation of core heptose), and both of these mutant strains failed to express OmpA protein in the outer membrane [31].
  • The wild-type rfa-2 allele codes either for a specific heptose biosynthetic enzyme (different from the rfaD gene product) or an enzymatic activity required for the addition of heptose to the lipid A-2-keto-3-deoxyoctulosonic acid acceptor [32].
  • We have cloned a gene from a Salmonella typhimurium with the ability to complement the rfaC mutation (heptose-deficient lipopolysaccharide, sensitivity to rough-specific bacteriophages, and susceptibility to hydrophobic antibiotics) [33].
  • The phoP mutant was restricted to the expression of a single molecular species, containing terminal heptose [34].
  • Strain DK-1, an rfaD gene mutant, expresses a truncated LOS consisting of only three deoxy-D-manno-octulosonic acid residues, a single heptose, and lipid A [35].
 

Analytical, diagnostic and therapeutic context of NSC2555

References

  1. Alterations in envelope structure of heptose-deficient mutants of Escherichia coli as revealed by freeze-etching. Bayer, M.E., Koplow, J., Goldfine, H. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  2. Mechanism of human platelet activation by endotoxic glycolipid-bearing mutant Re595 of Salmonella minnesota. Timmons, S., Huzoor-Akbar, n.u.l.l., Grabarek, J., Kloczewiak, M., Hawiger, J. Blood (1986) [Pubmed]
  3. O-Acetylation of the terminal N-acetylglucosamine of the lipooligosaccharide inner core in Neisseria meningitidis. Influence on inner core structure and assembly. Kahler, C.M., Lyons-Schindler, S., Choudhury, B., Glushka, J., Carlson, R.W., Stephens, D.S. J. Biol. Chem. (2006) [Pubmed]
  4. Isolation of adenosine 5'-diphosphate-D-glycero-D-mannoheptose. An intermediate in lipopolysaccharide biosynthesis of Shigella sonnei. Kontrohr, T., Kocsis, B. J. Biol. Chem. (1981) [Pubmed]
  5. Specific Amino Acids of the Glycosyltransferase LpsA Direct the Addition of Glucose or Galactose to the Terminal Inner Core Heptose of Haemophilus influenzae Lipopolysaccharide via Alternative Linkages. Deadman, M.E., Lundstr??m, S.L., Schweda, E.K., Moxon, E.R., Hood, D.W. J. Biol. Chem. (2006) [Pubmed]
  6. The role of galacturonic acid in outer membrane stability in Klebsiella pneumoniae. Frirdich, E., Bouwman, C., Vinogradov, E., Whitfield, C. J. Biol. Chem. (2005) [Pubmed]
  7. A mannosyl transferase required for lipopolysaccharide inner core assembly in Rhizobium leguminosarum. Purification, substrate specificity, and expression in Salmonella waaC mutants. Kanipes, M.I., Ribeiro, A.A., Lin, S., Cotter, R.J., Raetz, C.R. J. Biol. Chem. (2003) [Pubmed]
  8. Purification and characterization of WaaP from Escherichia coli, a lipopolysaccharide kinase essential for outer membrane stability. Yethon, J.A., Whitfield, C. J. Biol. Chem. (2001) [Pubmed]
  9. Enzymatic synthesis of lipopolysaccharide in Escherichia coli. Purification and properties of heptosyltransferase i. Kadrmas, J.L., Raetz, C.R. J. Biol. Chem. (1998) [Pubmed]
  10. Lipopolysaccharide core glycosylation in Rhizobium leguminosarum. An unusual mannosyl transferase resembling the heptosyl transferase I of Escherichia coli. Kadrmas, J.L., Brozek, K.A., Raetz, C.R. J. Biol. Chem. (1996) [Pubmed]
  11. A phosphoethanolamine transferase specific for the outer 3-deoxy-D-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide. Identification of the eptB gene and Ca2+ hypersensitivity of an eptB deletion mutant. Reynolds, C.M., Kalb, S.R., Cotter, R.J., Raetz, C.R. J. Biol. Chem. (2005) [Pubmed]
  12. Composition and antigenic activity of the oligosaccharide moiety of Haemophilus influenzae type b lipooligosaccharide. Inzana, T.J., Seifert, W.E., Williams, R.P. Infect. Immun. (1985) [Pubmed]
  13. Lack of antibacterial activity of pentoxifylline. Yu, P.K., Washington, J.A. Antimicrob. Agents Chemother. (1986) [Pubmed]
  14. Production and properties of cyanobacterial endotoxins. Keleti, G., Sykora, J.L. Appl. Environ. Microbiol. (1982) [Pubmed]
  15. Tris(hydroxymethyl)aminomethane buffer modification of Escherichia coli outer membrane permeability. Irvin, R.T., MacAlister, T.J., Costerton, J.W. J. Bacteriol. (1981) [Pubmed]
  16. The structure of lipooligosaccharide produced by Neisseria gonorrhoeae, strain 15253, isolated from a patient with disseminated infection. Evidence for a new glycosylation pathway of the gonococcal lipooligosaccharide. Yamasaki, R., Kerwood, D.E., Schneider, H., Quinn, K.P., Griffiss, J.M., Mandrell, R.E. J. Biol. Chem. (1994) [Pubmed]
  17. Comparison of the effects of D-mannoheptulose and its hexaacetate ester on D-glucose metabolism and insulinotropic action in rat pancreatic islets. Sener, A., Kadiata, M.M., Olivares, E., Malaisse, W.J. Diabetologia (1998) [Pubmed]
  18. Novel lipopolysaccharide biosynthetic genes containing tetranucleotide repeats in Haemophilus influenzae, identification of a gene for adding O-acetyl groups. Fox, K.L., Yildirim, H.H., Deadman, M.E., Schweda, E.K., Moxon, E.R., Hood, D.W. Mol. Microbiol. (2005) [Pubmed]
  19. The role of the pilus in recipient cell recognition during bacterial conjugation mediated by F-like plasmids. Anthony, K.G., Sherburne, C., Sherburne, R., Frost, L.S. Mol. Microbiol. (1994) [Pubmed]
  20. Structural studies of the lipooligosaccharides from Haemophilus influenzae type b strain A2. Phillips, N.J., Apicella, M.A., Griffiss, J.M., Gibson, B.W. Biochemistry (1993) [Pubmed]
  21. On the track to the beta-cell. Malaisse, W.J. Diabetologia (2001) [Pubmed]
  22. Enhancement of sample loadings for the analysis of oligosaccharides isolated from Pseudomonas aeruginosa using transient isotachophoresis and capillary zone electrophoresis - electrospray - mass spectrometry. Auriola, S., Thibault, P., Sadovskaya, I., Altman, E. Electrophoresis (1998) [Pubmed]
  23. Characterization of the virulence and antigenic structure of Salmonella typhimurium strains with lipopolysaccharide core defects. Lyman, M.B., Steward, J.P., Roantree, R.J. Infect. Immun. (1976) [Pubmed]
  24. Chemical and ultrastructural differences in endotoxic glycolipids from Salmonella minnesota Re mutant extracted with various solvent systems. Amano, K., Fukushi, K. Microbiol. Immunol. (1984) [Pubmed]
  25. Uptake of D-mannoheptulose by rat erythrocytes, hepatocytes and parotid cells. Ramirez, R., Courtois, P., Ladriere, L., Kadiata, M.M., Sener, A., Malaisse, W.J. Int. J. Mol. Med. (2001) [Pubmed]
  26. Role of lgtC in Resistance of Nontypeable Haemophilus influenzae Strain R2866 to Human Serum. Erwin, A.L., Allen, S., Ho, D.K., Bonthius, P.J., Jarisch, J., Nelson, K.L., Tsao, D.L., Unrath, W.C., Watson, M.E., Gibson, B.W., Apicella, M.A., Smith, A.L. Infect. Immun. (2006) [Pubmed]
  27. Characterization of endotoxin from Fusobacterium necrophorun. Garcia, M.M., Charlton, K.M., McKay, K.A. Infect. Immun. (1975) [Pubmed]
  28. Characterization of the lipopolysaccharide from Vibrio cholerae 395 (Ogawa). Kabir, S. Infect. Immun. (1982) [Pubmed]
  29. Structural elucidation of the lipopolysaccharide core region of the O-chain-deficient mutant strain A28 from Pseudomonas aeruginosa serotype 06 (International Antigenic Typing Scheme). Masoud, H., Sadovskaya, I., de Kievit, T., Altman, E., Richards, J.C., Lam, J.S. J. Bacteriol. (1995) [Pubmed]
  30. gmhX, a novel gene required for the incorporation of L-glycero-D-manno-heptose into lipooligosaccharide in Neisseria meningitidis. Shih, G.C., Kahler, C.M., Carlson, R.W., Rahman, M.M., Stephens, D.S. Microbiology (Reading, Engl.) (2001) [Pubmed]
  31. Regulation of the OmpA outer membrane protein of Escherichia coli. Beher, M.G., Schnaitman, C.A. J. Bacteriol. (1981) [Pubmed]
  32. New cysE-pyrE-linked rfa mutation in Escherichia coli K-12 that results in a heptoseless lipopolysaccharide. Coleman, W.G., Deshpande, K.S. J. Bacteriol. (1985) [Pubmed]
  33. The rfaC gene of Salmonella typhimurium. Cloning, sequencing, and enzymatic function in heptose transfer to lipopolysaccharide. Sirisena, D.M., Brozek, K.A., MacLachlan, P.R., Sanderson, K.E., Raetz, C.R. J. Biol. Chem. (1992) [Pubmed]
  34. Structural characterization of lipo-oligosaccharide (LOS) from Yersinia pestis: regulation of LOS structure by the PhoPQ system. Hitchen, P.G., Prior, J.L., Oyston, P.C., Panico, M., Wren, B.W., Titball, R.W., Morris, H.R., Dell, A. Mol. Microbiol. (2002) [Pubmed]
  35. Expression of cytokine and chemokine genes by human middle ear epithelial cells induced by formalin-killed Haemophilus influenzae or its lipooligosaccharide htrB and rfaD mutants. Tong, H.H., Chen, Y., James, M., Van Deusen, J., Welling, D.B., DeMaria, T.F. Infect. Immun. (2001) [Pubmed]
  36. Molecular structures that influence the immunomodulatory properties of the lipid A and inner core region oligosaccharides of bacterial lipopolysaccharides. Baker, P.J., Hraba, T., Taylor, C.E., Stashak, P.W., Fauntleroy, M.B., Zähringer, U., Takayama, K., Sievert, T.R., Hronowski, X., Cotter, R.J. Infect. Immun. (1994) [Pubmed]
 
WikiGenes - Universities