The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

asparagine     2-amino-3-aminocarbonyl- propanoic acid

Synonyms: asparagin, asparagina, Hasp, DL-Asparagine, DL-Aspartamine, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of asparagine

 

Psychiatry related information on asparagine

 

High impact information on asparagine

 

Chemical compound and disease context of asparagine

 

Biological context of asparagine

 

Anatomical context of asparagine

  • The oligosaccharide-lipid which is the precursor of asparagine-linked oligosaccharides of eucaryotic glycoproteins is synthesized from sugar nucleotides in the endoplasmic reticulum [25].
  • The lipid-linked and asparagine-linked oligosaccharides of two lectin-resistant and one parental Chinese hamster ovary (CHO) cell line have been compared by glycosidase digestion and gel filtration analysis of radiolabeled glycopeptides and oligosaccharides [26].
  • Most of the sequence of fibroblast TGF-beta 1-BP is made up of cysteine-rich repeats of two different kinds; there are 16 EGF-like repeats and three repeats with a distant resemblance to EGF, but of a distinct type hitherto not found in any other protein. beta-hydroxylated asparagine residues were identified in two of the EGF-like repeats [27].
  • In return, bacteroids act like plant organelles to cycle amino acids back to the plant for asparagine synthesis [28].
  • Rhodopsin, the visual pigment of retinal rod photoreceptor cells, is a membrane glycoprotein which consists of a single polypeptide chain (opsin) to which a chromophoric prosthetic group (II-cis-retinaldehyde) and two asparagine-linked oligosaccharide chains are covalently attached [29].
 

Associations of asparagine with other chemical compounds

  • Three of these VSGs terminated with a glycosylated aspartate or asparagine residue (Asx), suggesting that the VSG was cleaved following synthesis and glycosylation and before characterization [30].
  • Here we show that replacement of a single amino acid in the human receptor (threonine at residue 355) with a corresponding asparagine found in rodent 5-HT1B receptors renders the pharmacology of the receptors essentially identical [31].
  • Here we show that acrylamide can be released by the thermal treatment of certain amino acids (asparagine, for example), particularly in combination with reducing sugars, and of early Maillard reaction products (N-glycosides) [32].
  • The amino-terminal half of amphiregulin is extremely hydrophilic and contains unusually high numbers of lysine, arginine, and asparagine residues [33].
  • The mutation in 216 is located at nucleotide 535 in the hetR gene, converting a serine at position 179 in the wild-type protein to an asparagine in the mutant [34].
 

Gene context of asparagine

 

Analytical, diagnostic and therapeutic context of asparagine

  • One mutation, constructed by oligonucleotide-directed mutagenesis, replaces Asp27 with asparagine; the other is a primary-site revertant to Ser27 [40].
  • Sequence analysis revealed that this novel ecSOD has a 10-bp deletion in the 3' untranslated region and an asparagine to aspartic acid mutation at amino acid 21 [41].
  • A functionally critical asparagine (N-site) is positioned at the tip of the loop, and a cluster of hydrophilic residues of the descending limb, adjacent to the tip, forms the narrow constriction of the channel [42].
  • PCR sequencing revealed a substitution of arginine for glycine at position 145 of HBsAg in the major neutralising epitope cluster, the a determinant, as well as a 2-aminoacid insertion of asparagine and threonine between positions 122 and 123, immediately upstream of this determinant [43].
  • METHODS: Asparagine-linked oligosaccharide processing of apolipoprotein B48 in normal and affected individuals was determined by the endoglycosidase H and F sensitivities of the protein after metabolic labeling of intestinal explants in organ culture [44].

References

  1. Asparagine synthetase chemotherapy. Richards, N.G., Kilberg, M.S. Annu. Rev. Biochem. (2006) [Pubmed]
  2. Abnormal lipid-linked oligosaccharides in class E Thy-1-negative mutant lymphomas. Trowbridge, I.S., Hyman, R. Cell (1979) [Pubmed]
  3. Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Saada, A., Shaag, A., Mandel, H., Nevo, Y., Eriksson, S., Elpeleg, O. Nat. Genet. (2001) [Pubmed]
  4. Processing of the asparagine-linked oligosaccharides of secreted and intracellular forms of the vesicular stomatitis virus G protein: in vivo evidence of Golgi apparatus compartmentalization. Gabel, C.A., Bergmann, J.E. J. Cell Biol. (1985) [Pubmed]
  5. Processing of MOPC 315 immunoglobulin A oligosaccharides: evidence for endoplasmic reticulum and trans Golgi alpha 1,2-mannosidase activity. Hickman, S., Theodorakis, J.L., Greco, J.M., Brown, P.H. J. Cell Biol. (1984) [Pubmed]
  6. Effective asparagine depletion with pegylated asparaginase results in improved outcomes in adult acute lymphoblastic leukemia: Cancer and Leukemia Group B Study 9511. Wetzler, M., Sanford, B.L., Kurtzberg, J., DeOliveira, D., Frankel, S.R., Powell, B.L., Kolitz, J.E., Bloomfield, C.D., Larson, R.A. Blood (2007) [Pubmed]
  7. Altered activity, social behavior, and spatial memory in mice lacking the NTAN1p amidase and the asparagine branch of the N-end rule pathway. Kwon, Y.T., Balogh, S.A., Davydov, I.V., Kashina, A.S., Yoon, J.K., Xie, Y., Gaur, A., Hyde, L., Denenberg, V.H., Varshavsky, A. Mol. Cell. Biol. (2000) [Pubmed]
  8. Hyperasparaginemia in a schizophrenic patient. Perry, T.L., Wright, J.M., Hansen, S. Biol. Psychiatry (1983) [Pubmed]
  9. Free amino acids in the brain of patients with Parkinson's disease. Rinne, J.O., Halonen, T., Riekkinen, P.J., Rinne, U.K. Neurosci. Lett. (1988) [Pubmed]
  10. Proline hydroxylation and gene expression. Kaelin, W.G. Annu. Rev. Biochem. (2005) [Pubmed]
  11. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. DePace, A.H., Santoso, A., Hillner, P., Weissman, J.S. Cell (1998) [Pubmed]
  12. Alpha-mannosidase-II deficiency results in dyserythropoiesis and unveils an alternate pathway in oligosaccharide biosynthesis. Chui, D., Oh-Eda, M., Liao, Y.F., Panneerselvam, K., Lal, A., Marek, K.W., Freeze, H.H., Moremen, K.W., Fukuda, M.N., Marth, J.D. Cell (1997) [Pubmed]
  13. Mutation of a type II keratin gene (K6a) in pachyonychia congenita. Bowden, P.E., Haley, J.L., Kansky, A., Rothnagel, J.A., Jones, D.O., Turner, R.J. Nat. Genet. (1995) [Pubmed]
  14. Oligosaccharyltransferase activity is associated with a protein complex composed of ribophorins I and II and a 48 kd protein. Kelleher, D.J., Kreibich, G., Gilmore, R. Cell (1992) [Pubmed]
  15. The crystal structure of asparaginyl-tRNA synthetase from Thermus thermophilus and its complexes with ATP and asparaginyl-adenylate: the mechanism of discrimination between asparagine and aspartic acid. Berthet-Colominas, C., Seignovert, L., Härtlein, M., Grotli, M., Cusack, S., Leberman, R. EMBO J. (1998) [Pubmed]
  16. Mutations in the coding region of c-MYC in AIDS-associated and other aggressive lymphomas. Clark, H.M., Yano, T., Otsuki, T., Jaffe, E.S., Shibata, D., Raffeld, M. Cancer Res. (1994) [Pubmed]
  17. Role of Glutamine Depletion in Directing Tissue-specific Nutrient Stress Responses to L-Asparaginase. Reinert, R.B., Oberle, L.M., Wek, S.A., Bunpo, P., Wang, X.P., Mileva, I., Goodwin, L.O., Aldrich, C.J., Durden, D.L., McNurlan, M.A., Wek, R.C., Anthony, T.G. J. Biol. Chem. (2006) [Pubmed]
  18. Site-directed mutagenesis of glutamate 166 in two beta-lactamases. Kinetic and molecular modeling studies. Guillaume, G., Vanhove, M., Lamotte-Brasseur, J., Ledent, P., Jamin, M., Joris, B., Frère, J.M. J. Biol. Chem. (1997) [Pubmed]
  19. Purification and some properties of asparagine, lysine, serine, and valine:tRNA ligases from Bacillus stearothermophilus. Samuelsson, T., Lundvik, L. J. Biol. Chem. (1978) [Pubmed]
  20. Selection of temperature-sensitive CHL asparagyl-tRNA synthetase mutants using the toxic lysine analog, S-2-aminoethyl-L-cysteine. Wasmuth, J.J., Caskey, C.T. Cell (1976) [Pubmed]
  21. Mammalian cells with defective mitochondrial functions: a Chinese hamster mutant cell line lacking succinate dehydrogenase activity. Soderberg, K.L., Ditta, G.S., Scheffler, I.E. Cell (1977) [Pubmed]
  22. Nucleotide sequence of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase, a glycoprotein of endoplasmic reticulum. Chin, D.J., Gil, G., Russell, D.W., Liscum, L., Luskey, K.L., Basu, S.K., Okayama, H., Berg, P., Goldstein, J.L., Brown, M.S. Nature (1984) [Pubmed]
  23. Genetic analysis of histone H4: essential role of lysines subject to reversible acetylation. Megee, P.C., Morgan, B.A., Mittman, B.A., Smith, M.M. Science (1990) [Pubmed]
  24. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Lando, D., Peet, D.J., Gorman, J.J., Whelan, D.A., Whitelaw, M.L., Bruick, R.K. Genes Dev. (2002) [Pubmed]
  25. Transmembrane location of oligosaccharide-lipid synthesis in microsomal vesicles. Snider, M.D., Sultzman, L.A., Robbins, P.W. Cell (1980) [Pubmed]
  26. CHO cells selected for phytohemagglutinin and con A resistance are defective in both early and late stages of protein glycosylation. Hunt, L.A. Cell (1980) [Pubmed]
  27. TGF-beta 1 binding protein: a component of the large latent complex of TGF-beta 1 with multiple repeat sequences. Kanzaki, T., Olofsson, A., Morén, A., Wernstedt, C., Hellman, U., Miyazono, K., Claesson-Welsh, L., Heldin, C.H. Cell (1990) [Pubmed]
  28. Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis. Lodwig, E.M., Hosie, A.H., Bourdès, A., Findlay, K., Allaway, D., Karunakaran, R., Downie, J.A., Poole, P.S. Nature (2003) [Pubmed]
  29. Photoreceptor-specific degeneration caused by tunicamycin. Fliesler, S.J., Rapp, L.M., Hollyfield, J.G. Nature (1984) [Pubmed]
  30. A variant surface glycoprotein of Trypanosoma brucei synthesized with a C-terminal hydrophobic 'tail' absent from purified glycoprotein. Boothroyd, J.C., Cross, G.A., Hoeijmakers, J.H., Borst, P. Nature (1980) [Pubmed]
  31. A single amino-acid difference confers major pharmacological variation between human and rodent 5-HT1B receptors. Oksenberg, D., Marsters, S.A., O'Dowd, B.F., Jin, H., Havlik, S., Peroutka, S.J., Ashkenazi, A. Nature (1992) [Pubmed]
  32. Acrylamide from Maillard reaction products. Stadler, R.H., Blank, I., Varga, N., Robert, F., Hau, J., Guy, P.A., Robert, M.C., Riediker, S. Nature (2002) [Pubmed]
  33. Structure and function of human amphiregulin: a member of the epidermal growth factor family. Shoyab, M., Plowman, G.D., McDonald, V.L., Bradley, J.G., Todaro, G.J. Science (1989) [Pubmed]
  34. Characterization of a gene controlling heterocyst differentiation in the cyanobacterium Anabaena 7120. Buikema, W.J., Haselkorn, R. Genes Dev. (1991) [Pubmed]
  35. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Ye, J., Rawson, R.B., Komuro, R., Chen, X., Davé, U.P., Prywes, R., Brown, M.S., Goldstein, J.L. Mol. Cell (2000) [Pubmed]
  36. Structural basis of SNT PTB domain interactions with distinct neurotrophic receptors. Dhalluin, C., Yan, K.S., Plotnikova, O., Lee, K.W., Zeng, L., Kuti, M., Mujtaba, S., Goldfarb, M.P., Zhou, M.M. Mol. Cell (2000) [Pubmed]
  37. Isolation and sequence analysis of serine protease cDNAs from mouse cytolytic T lymphocytes. Kwon, B.S., Kestler, D., Lee, E., Wakulchik, M., Young, J.D. J. Exp. Med. (1988) [Pubmed]
  38. OCH1 encodes a novel membrane bound mannosyltransferase: outer chain elongation of asparagine-linked oligosaccharides. Nakayama, K., Nagasu, T., Shimma, Y., Kuromitsu, J., Jigami, Y. EMBO J. (1992) [Pubmed]
  39. Conversion of aquaporin 6 from an anion channel to a water-selective channel by a single amino acid substitution. Liu, K., Kozono, D., Kato, Y., Agre, P., Hazama, A., Yasui, M. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  40. Functional role of aspartic acid-27 in dihydrofolate reductase revealed by mutagenesis. Howell, E.E., Villafranca, J.E., Warren, M.S., Oatley, S.J., Kraut, J. Science (1986) [Pubmed]
  41. Vascular expression of extracellular superoxide dismutase in atherosclerosis. Fukai, T., Galis, Z.S., Meng, X.P., Parthasarathy, S., Harrison, D.G. J. Clin. Invest. (1998) [Pubmed]
  42. Structure of the NMDA receptor channel M2 segment inferred from the accessibility of substituted cysteines. Kuner, T., Wollmuth, L.P., Karlin, A., Seeburg, P.H., Sakmann, B. Neuron (1996) [Pubmed]
  43. Fulminant reactivation of hepatitis B due to envelope protein mutant that escaped detection by monoclonal HBsAg ELISA. Carman, W.F., Korula, J., Wallace, L., MacPhee, R., Mimms, L., Decker, R. Lancet (1995) [Pubmed]
  44. Apolipoprotein B48 glycosylation in abetalipoproteinemia and Anderson's disease. Berriot-Varoqueaux, N., Dannoura, A.H., Moreau, A., Verthier, N., Sassolas, A., Cadiot, G., Lachaux, A., Munck, A., Schmitz, J., Aggerbeck, L.P., Samson-Bouma, M.E. Gastroenterology (2001) [Pubmed]
 
WikiGenes - Universities