The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

sulfur     sulfane

Synonyms: Aquilite, Collokit, Gofrativ, Hepatate, Liquamat, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of hydrogen sulfide

 

Psychiatry related information on hydrogen sulfide

 

High impact information on hydrogen sulfide

  • In addition, it may facilitate reactivation of PTP1B by biological thiols and signal a unique state of the protein [11].
  • Mechanistic reexamination of NO interactions with other haem proteins containing allosteric-site thiols may be warranted [12].
  • The second is to modulate increases in contraction that are dependent on reactive oxygen intermediates and which are thought to occur through reactions with regulatory thiols on the sarcoplasmic reticulum [13].
  • Mitochondrial thiols are an important target of oxidant-induced apoptosis and necrosis and are especially vulnerable to oxidation because of the relatively alkaline pH [14].
  • The redox state of the thiols (disulfide versus dithiol) appeared to be regulated by thioredoxin, which is secreted by CD4(+) T cells [15].
 

Chemical compound and disease context of hydrogen sulfide

 

Biological context of hydrogen sulfide

  • Since thiols can undergo nitrosation and the cell membrane is rich in thiol-containing proteins, we considered the possibility that membrane surface thiols may regulate cellular entry of NO [21].
  • Our results suggest that ERp57 modulates the redox state of ER facing thiols in SERCA 2b in a Ca2+-dependent manner, providing dynamic control of ER Ca2+ homeostasis [22].
  • Diamide oxidizes cellular thiols and induces oxidative stress [23].
  • This method has allowed the preparation of two mutant B1 subunits in which two of the four thiols postulated to be within the active site of the enzyme, Cys-225 and Cys-759, have been changed to serines [24].
  • Alkylation of erythrocyte thiols also promoted translocation of calpain to the membrane, especially in the presence of Ca2+ [25].
 

Anatomical context of hydrogen sulfide

  • The three plasma proteins may together constitute a system for linkage and transport of peptides with reactive thiols or disulfides released into the extracellular fluids [26].
  • Abnormal redox status of membrane-protein thiols in sickle erythrocytes [27].
  • We examined RBC membranes using thiol-disulfide exchange chromatography which partitions sodium dodecyl sulfate-solubilized proteins on the basis of reactive thiols, yielding gel-bound (reduced-thiol) and filtrate (oxidized/blocked-thiol) fractions [27].
  • In skeletal muscle myosin, the reactive thiols (SH1 and SH2) are close to a proposed fulcrum region that is thought to undergo a large conformational change [28].
  • Particular thiols of the myosin subfragment 1 moieties of single glycerinated muscle fibers are covalently labeled with rhodamine [29].
 

Associations of hydrogen sulfide with other chemical compounds

 

Gene context of hydrogen sulfide

  • These results demonstrate that NAC, GSH, and other thiols may control the production of both the Th2-derived cytokine IL-4 and IL-4-induced Ig in vitro and in vivo [35].
  • Indeed, exposure to a noncytotoxic concentration of HQ induced both NQO1 and soluble thiols and protected against HQ-induced apoptosis [36].
  • Circulating erythrocytes from the GSHPx-1-deficient mice exhibited a slight reduction in membrane thiols, indicating that high exposure to peroxides might occur naturally in the circulation [37].
  • In cell-free extracts, thiols quickly eliminated the SOD2 activity [38].
  • The thiol specificity of the protective activity of TSA derives from the fact that the oxidized form of TSA can be converted back to its sulfhydryl form by treatment with thiols but not by ascorbate [39].
 

Analytical, diagnostic and therapeutic context of hydrogen sulfide

  • High-pressure liquid chromatography of the total thiols showed that a single peak of material was elevated almost 40-fold [33].
  • Analysis of the role of free thiols in platelet aggregation suggested a thiol-independent initial ligation followed by a thiol-dependent stabilization of binding [40].
  • There is a wide range of literature on soft lithography, organic surface science (especially self-assembled monolayers of organic thiols adsorbed on gold) and microfluidics [41].
  • The state of CPR-associated thiols may be an important determinant of CPR binding under physiologic conditions other than phagocytosis [42].
  • Intracavitary chemotherapy with activated cyclophosphamides and simultaneous systemic detoxification with protector thiols in Sarcoma 180 ascites tumor [43].

References

  1. How to flip the (redox) switch. Georgiou, G. Cell (2002) [Pubmed]
  2. Nitric oxide in the human respiratory cycle. McMahon, T.J., Moon, R.E., Luschinger, B.P., Carraway, M.S., Stone, A.E., Stolp, B.W., Gow, A.J., Pawloski, J.R., Watke, P., Singel, D.J., Piantadosi, C.A., Stamler, J.S. Nat. Med. (2002) [Pubmed]
  3. Diterpenoids from germander, an herbal medicine, induce apoptosis in isolated rat hepatocytes. Fau, D., Lekehal, M., Farrell, G., Moreau, A., Moulis, C., Feldmann, G., Haouzi, D., Pessayre, D. Gastroenterology (1997) [Pubmed]
  4. Hyperammonemic coma after hepatectomy in germ-free rats. Schalm, S.W., van der Mey, T. Gastroenterology (1979) [Pubmed]
  5. Beneficial effects of L-2-oxothiazolidine-4-carboxylate on cerulein pancreatitis in mice. Lüthen, R., Grendell, J.H., Häussinger, D., Niederau, C. Gastroenterology (1997) [Pubmed]
  6. Michael addition of amines and thiols to dehydroalanine amides: a remarkable rate acceleration in water. Naidu, B.N., Sorenson, M.E., Connolly, T.P., Ueda, Y. J. Org. Chem. (2003) [Pubmed]
  7. Use of an organoleptic tracer (mercaptan) for testing for leaks in safety equipment. Malligo, J.E. Appl. Environ. Microbiol. (1977) [Pubmed]
  8. Oxidative modification of hepatic mitochondria protein thiols: effect of chronic alcohol consumption. Venkatraman, A., Landar, A., Davis, A.J., Ulasova, E., Page, G., Murphy, M.P., Darley-Usmar, V., Bailey, S.M. Am. J. Physiol. Gastrointest. Liver Physiol. (2004) [Pubmed]
  9. Increased brain levels of 4-hydroxy-2-nonenal glutathione conjugates in severe Alzheimer's disease. Völkel, W., Sicilia, T., Pähler, A., Gsell, W., Tatschner, T., Jellinger, K., Leblhuber, F., Riederer, P., Lutz, W.K., Götz, M.E. Neurochem. Int. (2006) [Pubmed]
  10. Regulation of cellular thiol redox status by nitric oxide. Padgett, C.M., Whorton, A.R. Cell Biochem. Biophys. (1995) [Pubmed]
  11. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. van Montfort, R.L., Congreve, M., Tisi, D., Carr, R., Jhoti, H. Nature (2003) [Pubmed]
  12. Reactions between nitric oxide and haemoglobin under physiological conditions. Gow, A.J., Stamler, J.S. Nature (1998) [Pubmed]
  13. Nitric oxide in skeletal muscle. Kobzik, L., Reid, M.B., Bredt, D.S., Stamler, J.S. Nature (1994) [Pubmed]
  14. Nuclear and mitochondrial compartmentation of oxidative stress and redox signaling. Hansen, J.M., Go, Y.M., Jones, D.P. Annu. Rev. Pharmacol. Toxicol. (2006) [Pubmed]
  15. Disulfide exchange in domain 2 of CD4 is required for entry of HIV-1. Matthias, L.J., Yam, P.T., Jiang, X.M., Vandegraaff, N., Li, P., Poumbourios, P., Donoghue, N., Hogg, P.J. Nat. Immunol. (2002) [Pubmed]
  16. Characterization of slow reacting substances (SRSs) of rat basophilic leukemia (RBL-1) cells: effect of cysteine on SRS profile. Sok, D.E., Pai, J.K., Atrache, V., Sih, C.J. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  17. Redox control of exofacial protein thiols/disulfides by protein disulfide isomerase. Jiang, X.M., Fitzgerald, M., Grant, C.M., Hogg, P.J. J. Biol. Chem. (1999) [Pubmed]
  18. Adult T cell leukemia (ATL)-derived factor/human thioredoxin prevents apoptosis of lymphoid cells induced by L-cystine and glutathione depletion: possible involvement of thiol-mediated redox regulation in apoptosis caused by pro-oxidant state. Iwata, S., Hori, T., Sato, N., Hirota, K., Sasada, T., Mitsui, A., Hirakawa, T., Yodoi, J. J. Immunol. (1997) [Pubmed]
  19. Extracellular Production of Hydrogen Selenide Accounts for Thiol-assisted Toxicity of Selenite against Saccharomyces cerevisiae. Tarze, A., Dauplais, M., Grigoras, I., Lazard, M., Ha-Duong, N.T., Barbier, F., Blanquet, S., Plateau, P. J. Biol. Chem. (2007) [Pubmed]
  20. Low plasma ascorbic acid independently predicts the presence of an unstable coronary syndrome. Vita, J.A., Keaney, J.F., Raby, K.E., Morrow, J.D., Freedman, J.E., Lynch, S., Koulouris, S.N., Hankin, B.R., Frei, B. J. Am. Coll. Cardiol. (1998) [Pubmed]
  21. Cell-surface protein disulfide isomerase catalyzes transnitrosation and regulates intracellular transfer of nitric oxide. Zai, A., Rudd, M.A., Scribner, A.W., Loscalzo, J. J. Clin. Invest. (1999) [Pubmed]
  22. Ca2+-dependent redox modulation of SERCA 2b by ERp57. Li, Y., Camacho, P. J. Cell Biol. (2004) [Pubmed]
  23. Characterization of Arabidopsis thaliana cDNAs that render yeasts tolerant toward the thiol-oxidizing drug diamide. Kushnir, S., Babiychuk, E., Kampfenkel, K., Belles-Boix, E., Van Montagu, M., Inzé, D. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  24. Mechanism-based inhibition of a mutant Escherichia coli ribonucleotide reductase (cysteine-225----serine) by its substrate CDP. Mao, S.S., Johnston, M.I., Bollinger, J.M., Stubbe, J. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  25. Calpain (Ca(2+)-dependent thiol protease) in erythrocytes of young and old individuals. Glaser, T., Schwarz-Benmeir, N., Barnoy, S., Barak, S., Eshhar, Z., Kosower, N.S. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  26. Thiol-disulfide interchange in the binding of bence jones proteins to alpha-antitrypsin, prealbumin, and albumin. Laurell, C.B., Thulin, E. J. Exp. Med. (1975) [Pubmed]
  27. Abnormal redox status of membrane-protein thiols in sickle erythrocytes. Rank, B.H., Carlsson, J., Hebbel, R.P. J. Clin. Invest. (1985) [Pubmed]
  28. Nucleotide-dependent conformational change near the fulcrum region in Dictyostelium myosin II. Liang, W., Spudich, J.A. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  29. Fluctuations in polarized fluorescence: evidence that muscle cross bridges rotate repetitively during contraction. Borejdo, J., Putnam, S., Morales, M.F. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  30. Redox regulation of neuronal survival mediated by electrophilic compounds. Satoh, T., Lipton, S.A. Trends Neurosci. (2007) [Pubmed]
  31. Competition between glutathione and protein thiols for disulphide-bond formation. Cuozzo, J.W., Kaiser, C.A. Nat. Cell Biol. (1999) [Pubmed]
  32. Antigen-presenting dendritic cells provide the reducing extracellular microenvironment required for T lymphocyte activation. Angelini, G., Gardella, S., Ardy, M., Ciriolo, M.R., Filomeni, G., Di Trapani, G., Clarke, F., Sitia, R., Rubartelli, A. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  33. Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania. Mukhopadhyay, R., Dey, S., Xu, N., Gage, D., Lightbody, J., Ouellette, M., Rosen, B.P. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  34. Redox regulation of surface protein thiols: identification of integrin alpha-4 as a molecular target by using redox proteomics. Laragione, T., Bonetto, V., Casoni, F., Massignan, T., Bianchi, G., Gianazza, E., Ghezzi, P. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  35. Thiols decrease human interleukin (IL) 4 production and IL-4-induced immunoglobulin synthesis. Jeannin, P., Delneste, Y., Lecoanet-Henchoz, S., Gauchat, J.F., Life, P., Holmes, D., Bonnefoy, J.Y. J. Exp. Med. (1995) [Pubmed]
  36. A potential mechanism underlying the increased susceptibility of individuals with a polymorphism in NAD(P)H:quinone oxidoreductase 1 (NQO1) to benzene toxicity. Moran, J.L., Siegel, D., Ross, D. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  37. Red cells from glutathione peroxidase-1-deficient mice have nearly normal defenses against exogenous peroxides. Johnson, R.M., Goyette, G., Ravindranath, Y., Ho, Y.S. Blood (2000) [Pubmed]
  38. Paradoxical effects of thiol reagents on Jurkat cells and a new thiol-sensitive mutant form of human mitochondrial superoxide dismutase. Hernandez-Saavedra, D., McCord, J.M. Cancer Res. (2003) [Pubmed]
  39. Removal of hydrogen peroxide by thiol-specific antioxidant enzyme (TSA) is involved with its antioxidant properties. TSA possesses thiol peroxidase activity. LES Netto, n.u.l.l., Chae, H.Z., Kang, S.W., Rhee, S.G., Stadtman, E.R. J. Biol. Chem. (1996) [Pubmed]
  40. Sustained integrin ligation involves extracellular free sulfhydryls and enzymatically catalyzed disulfide exchange. Lahav, J., Jurk, K., Hess, O., Barnes, M.J., Farndale, R.W., Luboshitz, J., Kehrel, B.E. Blood (2002) [Pubmed]
  41. Combining microscience and neurobiology. Weibel, D.B., Garstecki, P., Whitesides, G.M. Curr. Opin. Neurobiol. (2005) [Pubmed]
  42. Phagocytosis-induced chemotaxis receptor cycling in neutrophils is mediated by thiol oxidation. Lane, T.A., Lamkin, G.E. Blood (1982) [Pubmed]
  43. Intracavitary chemotherapy with activated cyclophosphamides and simultaneous systemic detoxification with protector thiols in Sarcoma 180 ascites tumor. Wagner, T., Mittendorff, F., Walter, E. Cancer Res. (1986) [Pubmed]
 
WikiGenes - Universities