The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Mesantoin     5-ethyl-3-methyl-5-phenyl- imidazolidine-2...

Synonyms: Insulton, Methoin, Mefenetoin, Phenantoin, MEPHENYTOIN, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Mesantoin

 

Psychiatry related information on Mesantoin

 

High impact information on Mesantoin

 

Chemical compound and disease context of Mesantoin

  • Poor metabolizers of mephenytoin thus have a lower capacity to metabolize carisoprodol and may therefore have an increased risk of developing concentration dependent side-effects such as drowsiness and hypotension, if treated with ordinary doses of carisoprodol [11].
  • Migraine sufferers (14F and 4M), fulfilling the criteria for migraine with and without aura according to the classification of the International Headache Society, were coadministered oral mephenytoin (100 mg) and debrisoquine (10 mg) during the initial phase of a typical migraine attack [12].
  • By using two structurally similar hydantoins, mephenytoin and its in vivo demethylated metabolite nirvanol, we examined the possibility for a stereoselective dissociation of fetal hydantoin toxicity from maternal anticonvulsant activity [13].
  • Chlorzoxazone and mephenytoin metabolism correlated with the multiple organ dysfunction score and with the multiple organ failure score [14].
  • If arene oxide intermediate metabolites are indeed involved in the toxicity of MHT and nirvanol, R-PEH may represent a safer alternative [15].
 

Biological context of Mesantoin

 

Anatomical context of Mesantoin

 

Associations of Mesantoin with other chemical compounds

 

Gene context of Mesantoin

  • Moreover, the S/R ratio of mephenytoin showed a small but significant increase (median difference, 0.02; 95% CI, 0 to 0.31; versus 0; 95% CI, -0.01 to 0.06), indicating an inhibition of CYP2C19 [29].
  • METHODS: Fourteen subjects, 6 poor metabolizers of CYP2C19 and 8 extensive metabolizers, received a single oral dose of 200 mg racemic mephenytoin (CYP2B6 in vivo marker) before (day -28) and during multiple-dose artemisinin administration (250 mg/d orally for 9 days and 500 mg on the tenth day) [30].
  • All patients were extensive metabolizers of mephenytoin (CYP2C19) and dextromethorphan (CYP2D6), except one patient, who had a genetic deficiency of CYP2D6 [31].
  • To determine developmental expression patterns, liver microsomal CYP2C9 and -2C19 were measured (n = 237; ages, 8 weeks gestation-18 years) by Western blotting and with diclofenac or mephenytoin, respectively, as probe substrates [32].
  • Inhibitors of CYP1A2 (furafylline) and CYP2C19 (mephenytoin) did not impair NT formation [33].
 

Analytical, diagnostic and therapeutic context of Mesantoin

References

  1. Clinical pharmacology of mephenytoin and ethotoin. Troupin, A.S., Friel, P., Lovely, M.P., Wilensky, A.J. Ann. Neurol. (1979) [Pubmed]
  2. Disposition of mephenytoin and its metabolite, nirvanol, in epileptic patients. Theodore, W.H., Newmark, M.E., Desai, B.T., Kupferberg, H.J., Penry, J.K., Porter, R.J., Yonekawa, W.D. Neurology (1984) [Pubmed]
  3. Liver disease selectively modulates cytochrome P450--mediated metabolism. Frye, R.F., Zgheib, N.K., Matzke, G.R., Chaves-Gnecco, D., Rabinovitz, M., Shaikh, O.S., Branch, R.A. Clin. Pharmacol. Ther. (2006) [Pubmed]
  4. Mephenytoin phenotyping: lack of haematologic effect and timing of urine collections. Relling, M.V., Ayers, D., Heideman, R.L. Pharmacogenetics (1991) [Pubmed]
  5. Possible association between poor metabolism of mephenytoin and hepatotoxicity caused by Atrium, a fixed combination preparation containing phenobarbital, febarbamate and difebarbamate. Horsmans, Y., Lannes, D., Pessayre, D., Larrey, D. J. Hepatol. (1994) [Pubmed]
  6. Mephenytoin: a reappraisal. Troupin, A.S., Ojemann, L.M., Dodrill, C.B. Epilepsia (1976) [Pubmed]
  7. Effects of mephenytoin and methsuximide on the reaction time of pigeons. Blakely, E., Starin, S., Poling, A. Pharmacol. Biochem. Behav. (1988) [Pubmed]
  8. Human cytochrome P-450 PB-1: a multigene family involved in mephenytoin and steroid oxidations that maps to chromosome 10. Meehan, R.R., Gosden, J.R., Rout, D., Hastie, N.D., Friedberg, T., Adesnik, M., Buckland, R., van Heyningen, V., Fletcher, J., Spurr, N.K. Am. J. Hum. Genet. (1988) [Pubmed]
  9. Family studies of mephenytoin hydroxylation deficiency. Inaba, T., Jurima, M., Kalow, W. Am. J. Hum. Genet. (1986) [Pubmed]
  10. Genetic predisposition to bladder cancer: ability to hydroxylate debrisoquine and mephenytoin as risk factors. Kaisary, A., Smith, P., Jaczq, E., McAllister, C.B., Wilkinson, G.R., Ray, W.A., Branch, R.A. Cancer Res. (1987) [Pubmed]
  11. Formation of meprobamate from carisoprodol is catalysed by CYP2C19. Dalén, P., Alvan, G., Wakelkamp, M., Olsen, H. Pharmacogenetics (1996) [Pubmed]
  12. Cytochrome P-450-dependent hydroxylation in migraine. Dahlöf, C., Alm, C., Bertling, I., Barret, L. Cephalalgia : an international journal of headache. (1992) [Pubmed]
  13. Relation of in vivo drug metabolism to stereoselective fetal hydantoin toxicology in mouse: evaluation of mephenytoin and its metabolite, nirvanol. Wells, P.G., Küpfer, A., Lawson, J.A., Harbison, R.D. J. Pharmacol. Exp. Ther. (1982) [Pubmed]
  14. Cytochrome P-450 activity is differentially altered in severely injured patients. Harbrecht, B.G., Frye, R.F., Zenati, M.S., Branch, R.A., Peitzman, A.B. Crit. Care Med. (2005) [Pubmed]
  15. Pharmacokinetics of R-enantiomeric normephenytoin during chronic administration in epileptic patients. Bourgeois, B.F., Küpfer, A., Wad, N., Egli, M. Epilepsia (1986) [Pubmed]
  16. S-mephenytoin hydroxylation phenotypes in a Swedish population determined after coadministration with debrisoquin. Sanz, E.J., Villén, T., Alm, C., Bertilsson, L. Clin. Pharmacol. Ther. (1989) [Pubmed]
  17. Genetic analysis of the S-mephenytoin polymorphism in a Chinese population. de Morais, S.M., Goldstein, J.A., Xie, H.G., Huang, S.L., Lu, Y.Q., Xia, H., Xiao, Z.S., Ile, N., Zhou, H.H. Clin. Pharmacol. Ther. (1995) [Pubmed]
  18. Mephenytoin hydroxylation deficiency: kinetics after repeated doses. Küpfer, A., Desmond, P., Patwardhan, R., Schenker, S., Branch, R.A. Clin. Pharmacol. Ther. (1984) [Pubmed]
  19. Human liver microsomal cytochrome P-450 mephenytoin 4-hydroxylase, a prototype of genetic polymorphism in oxidative drug metabolism. Purification and characterization of two similar forms involved in the reaction. Shimada, T., Misono, K.S., Guengerich, F.P. J. Biol. Chem. (1986) [Pubmed]
  20. Participation of a rat liver cytochrome P-450 induced by pregnenolone 16 alpha-carbonitrile and other compounds in the 4-hydroxylation of mephenytoin. Shimada, T., Guengerich, F.P. Mol. Pharmacol. (1985) [Pubmed]
  21. Mephenytoin disposition and serum bile acids as indices of hepatic function in chronic viral hepatitis. Arns, P.A., Adedoyin, A., DiBisceglie, A.M., Waggoner, J.G., Hoofnagle, J.H., Wilkinson, G.R., Branch, R.A. Clin. Pharmacol. Ther. (1997) [Pubmed]
  22. Diphenylhydantoin effects on salivary secretion and microsomal calcium accumulation and release. Watson, E.L., Siegel, I.A. Eur. J. Pharmacol. (1976) [Pubmed]
  23. Molecular and fluorescent sterol approaches to probing lysosomal membrane lipid dynamics. Gallegos, A.M., Atshaves, B.P., Storey, S., Schoer, J., Kier, A.B., Schroeder, F. Chem. Phys. Lipids (2002) [Pubmed]
  24. Free radical intermediates of phenytoin and related teratogens. Prostaglandin H synthase-catalyzed bioactivation, electron paramagnetic resonance spectrometry, and photochemical product analysis. Parman, T., Chen, G., Wells, P.G. J. Biol. Chem. (1998) [Pubmed]
  25. Comparison of chloroguanide and mephenytoin for the in vivo assessment of genetically determined CYP2C19 activity in humans. Partovian, C., Jacqz-Aigrain, E., Keundjian, A., Jaillon, P., Funck-Brentano, C. Clin. Pharmacol. Ther. (1995) [Pubmed]
  26. Sparteine and mephenytoin oxidation: genetic polymorphisms in east and west Greenland. Clasen, K., Madsen, L., Brøsen, K., Albøge, K., Misfeldt, S., Gram, L.F. Clin. Pharmacol. Ther. (1991) [Pubmed]
  27. The hydroxylation of omeprazole correlates with S-mephenytoin metabolism: a population study. Balian, J.D., Sukhova, N., Harris, J.W., Hewett, J., Pickle, L., Goldstein, J.A., Woosley, R.L., Flockhart, D.A. Clin. Pharmacol. Ther. (1995) [Pubmed]
  28. Bioequivalence revisited: influence of age and sex on CYP enzymes. Bebia, Z., Buch, S.C., Wilson, J.W., Frye, R.F., Romkes, M., Cecchetti, A., Chaves-Gnecco, D., Branch, R.A. Clin. Pharmacol. Ther. (2004) [Pubmed]
  29. Effect of growth hormone on hepatic cytochrome P450 activity in healthy elderly men. Jürgens, G., Lange, K.H., Reuther, L.Ø., Rasmussen, B.B., Brøsen, K., Christensen, H.R. Clin. Pharmacol. Ther. (2002) [Pubmed]
  30. Artemisinin autoinduction is caused by involvement of cytochrome P450 2B6 but not 2C9. Simonsson, U.S., Jansson, B., Hai, T.N., Huong, D.X., Tybring, G., Ashton, M. Clin. Pharmacol. Ther. (2003) [Pubmed]
  31. Non-response to citalopram in depressive patients: pharmacokinetic and clinical consequences of a fluvoxamine augmentation. Bondolfi, G., Chautems, C., Rochat, B., Bertschy, G., Baumann, P. Psychopharmacology (Berl.) (1996) [Pubmed]
  32. Developmental expression of human hepatic CYP2C9 and CYP2C19. Koukouritaki, S.B., Manro, J.R., Marsh, S.A., Stevens, J.C., Rettie, A.E., McCarver, D.G., Hines, R.N. J. Pharmacol. Exp. Ther. (2004) [Pubmed]
  33. Cytochromes P450 mediating the N-demethylation of amitriptyline. Ghahramani, P., Ellis, S.W., Lennard, M.S., Ramsay, L.E., Tucker, G.T. British journal of clinical pharmacology. (1997) [Pubmed]
  34. Phenotypic-genotypic analysis of CYP2C19 in the Jewish Israeli population. Sviri, S., Shpizen, S., Leitersdorf, E., Levy, M., Caraco, Y. Clin. Pharmacol. Ther. (1999) [Pubmed]
  35. Stereoselective mephobarbital hydroxylation cosegregates with mephenytoin hydroxylation. Küpfer, A., Branch, R.A. Clin. Pharmacol. Ther. (1985) [Pubmed]
  36. Analysis of mephenytoin, 4-hydroxymephenytoin and 4-hydroxyphenytoin enantiomers in human urine by cyclodextrin micellar electrokinetic capillary chromatography: simple determination of a hydroxylation polymorphism in man. Desiderio, C., Fanali, S., Küpfer, A., Thormann, W. Electrophoresis (1994) [Pubmed]
  37. Capillary electrophoresis to assess drug metabolism induced in vitro using single CYP450 enzymes (Supersomes): application to the chiral metabolism of mephenytoin and methadone. Prost, F., Thormann, W. Electrophoresis (2003) [Pubmed]
  38. Simultaneous liquid-chromatographic determination of some bronchodilators, anticonvulsants, chloramphenicol, and hypnotic agents, with Chromosorb P columns used for sample preparation. Svinarov, D.A., Dotchev, D.C. Clin. Chem. (1989) [Pubmed]
 
WikiGenes - Universities