The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

arbutin     (2R,3S,4S,5R,6S)-2- (hydroxymethyl)-6-(4...

Synonyms: Arbutine, Arbutyne, Arbutoside, Uvasol, Ursin, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of arbutin


High impact information on arbutin


Chemical compound and disease context of arbutin


Biological context of arbutin

  • Because this enzyme has its active site on the outer aspect of the inner membrane, it also catalyzes the transfer of phosphoglycerol residues to arbutin added to the medium (J.-P. Bohin and E. P. Kennedy, J. Biol. Chem. 259:8388-8393, 1984) [9].
  • From a genomic library of the industrially used strain Lactobacillus delbrueckii subsp. lactis DSM7290, a gene designated arbZ (869bp; encoding a 33.5kDa protein) was isolated by screening E. coli transformants for the ability to utilize the beta-glucoside arbutin [13].
  • The study of the kinetics and mechanism for inhibition of tyrosinase confirms the reversibility of arbutin as a competitive inhibitor of this enzyme [14].
  • When a plasmid containing the 8 kb beta-glucoside-specific regulon was transformed into E. coli CC118, the transformed strain was able to break down the beta-glucoside arbutin [15].
  • It was compared with those of kojic acid and arbutin, well-known tyrosinase inhibitors, with IC50 values of 6.32 and 112 microg/ mL, respectively [16].

Anatomical context of arbutin


Associations of arbutin with other chemical compounds


Gene context of arbutin

  • Therefore, it is very likely that the TGL2 gene can complement the E. coli diacylglycerol kinase disruptant, because it encodes a protein that degrades the diacylglycerol accumulated after growth in the presence of arbutin [22].
  • No significant difference in DOPAchrome tautomerase (DT) activity was observed before or after arbutin treatment [23].
  • On the other hand, the tyrosinase activity in the cells was reduced by arbutin treatment [24].
  • Targeted inactivation of each of the phospho-beta-glucosidase genes revealed that bglA is involved in aesculin hydrolysis, celA is essential for utilisation of cellobiose, amygdalin, gentobiose and salicin, and arb is required for utilisation of arbutin [25].
  • The arbutin transport gene, arbT, maps outside of the cel locus [2].

Analytical, diagnostic and therapeutic context of arbutin


  1. Effect of microorganisms isolated from the upper gut of malnourished children on intestinal sugar absorption in vivo. Gracey, M., Burke, V., Thomas, J.A., Stone, D.E. Am. J. Clin. Nutr. (1975) [Pubmed]
  2. Biochemical genetics of the cryptic gene system for cellobiose utilization in Escherichia coli K12. Kricker, M., Hall, B.G. Genetics (1987) [Pubmed]
  3. Syntheses of arbutin-alpha-glycosides and a comparison of their inhibitory effects with those of alpha-arbutin and arbutin on human tyrosinase. Sugimoto, K., Nishimura, T., Nomura, K., Sugimoto, K., Kuriki, T. Chem. Pharm. Bull. (2003) [Pubmed]
  4. Exolytic hydrolysis of toxic plant glucosides by guinea pig liver cytosolic beta-glucosidase. Gopalan, V., Pastuszyn, A., Galey, W.R., Glew, R.H. J. Biol. Chem. (1992) [Pubmed]
  5. Characterization of an Escherichia coli mdoB mutant strain unable to transfer sn-1-phosphoglycerol to membrane-derived oligosaccharides. Fiedler, W., Rotering, H. J. Biol. Chem. (1985) [Pubmed]
  6. Arabidopsis Sucrose Transporter AtSUC9. High-Affinity Transport Activity, Intragenic Control of Expression, and Early Flowering Mutant Phenotype. Sivitz, A.B., Reinders, A., Johnson, M.E., Krentz, A.D., Grof, C.P., Perroux, J.M., Ward, J.M. Plant Physiol. (2007) [Pubmed]
  7. Activation of the bgl operon by adaptive mutation. Hall, B.G. Mol. Biol. Evol. (1998) [Pubmed]
  8. Water transport by Na+-coupled cotransporters of glucose (SGLT1) and of iodide (NIS). The dependence of substrate size studied at high resolution. Zeuthen, T., Belhage, B., Zeuthen, E. J. Physiol. (Lond.) (2006) [Pubmed]
  9. Biosynthesis of membrane-derived oligosaccharides: characterization of mdoB mutants defective in phosphoglycerol transferase I activity. Jackson, B.J., Bohin, J.P., Kennedy, E.P. J. Bacteriol. (1984) [Pubmed]
  10. Bacterial deconjugation of arbutin by Escherichia coli. Siegers, C., Bodinet, C., Ali, S.S., Siegers, C.P. Phytomedicine (2003) [Pubmed]
  11. Intestinal transport of monosaccharide after biliary diversion in the rat. Burke, V., Malajczuk, A., Gracey, M., Speed, T.P., Thornett, M.L. The Australian journal of experimental biology and medical science. (1978) [Pubmed]
  12. Topical agents used in the management of hyperpigmentation. Halder, R.M., Richards, G.M. Skin Therapy Lett. (2004) [Pubmed]
  13. The arbZ gene from Lactobacillus delbrueckii subsp. lactis confers to Escherichia coli the ability to utilize the beta-glucoside arbutin. Weber, B.A., Klein, J.R., Henrich, B. Gene (1998) [Pubmed]
  14. Arbutin: mechanism of its depigmenting action in human melanocyte culture. Maeda, K., Fukuda, M. J. Pharmacol. Exp. Ther. (1996) [Pubmed]
  15. A novel beta-glucoside-specific PTS locus from Streptococcus mutans that is not inhibited by glucose. Cote, C.K., Cvitkovitch, D., Bleiweis, A.S., Honeyman, A.L. Microbiology (Reading, Engl.) (2000) [Pubmed]
  16. Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Kang, H.S., Kim, H.R., Byun, D.S., Son, B.W., Nam, T.J., Choi, J.S. Arch. Pharm. Res. (2004) [Pubmed]
  17. Lipid composition determines the effects of arbutin on the stability of membranes. Hincha, D.K., Oliver, A.E., Crowe, J.H. Biophys. J. (1999) [Pubmed]
  18. Mutagenicity of arbutin in mammalian cells after activation by human intestinal bacteria. Blaut, M., Braune, A., Wunderlich, S., Sauer, P., Schneider, H., Glatt, H. Food Chem. Toxicol. (2006) [Pubmed]
  19. Mechanisms of activation of the cryptic cel operon of Escherichia coli K12. Parker, L.L., Hall, B.G. Genetics (1990) [Pubmed]
  20. Aeromonas encheleia sp. nov., isolated from European eels. Esteve, C., Gutiérrez, M.C., Ventosa, A. Int. J. Syst. Bacteriol. (1995) [Pubmed]
  21. Preliminary study of phenolic glycosides from Origanum majorana; quantitative estimation of arbutin; cytotoxic activity of hydroquinone. Assaf, M.H., Ali, A.A., Makboul, M.A., Beck, J.P., Anton, R. Planta Med. (1987) [Pubmed]
  22. The Saccharomyces cerevisiae TGL2 gene encodes a protein with lipolytic activity and can complement an Escherichia coli diacylglycerol kinase disruptant. Van Heusden, G.P., Nebohâcovâ, M., Overbeeke, T.L., Steensma, H.Y. Yeast (1998) [Pubmed]
  23. Effect of arbutin on melanogenic proteins in human melanocytes. Chakraborty, A.K., Funasaka, Y., Komoto, M., Ichihashi, M. Pigment Cell Res. (1998) [Pubmed]
  24. Arbutin increases the pigmentation of cultured human melanocytes through mechanisms other than the induction of tyrosinase activity. Nakajima, M., Shinoda, I., Fukuwatari, Y., Hayasawa, H. Pigment Cell Res. (1998) [Pubmed]
  25. Genomic variation in Streptococcus mutans: deletions affecting the multiple pathways of beta-glucoside metabolism. Old, L.A., Lowes, S., Russell, R.R. Oral Microbiol. Immunol. (2006) [Pubmed]
  26. Urinary excretion and metabolism of arbutin after oral administration of Arctostaphylos uvae ursi extract as film-coated tablets and aqueous solution in healthy humans. Schindler, G., Patzak, U., Brinkhaus, B., von Niecieck, A., Wittig, J., Krähmer, N., Glöckl, I., Veit, M. Journal of clinical pharmacology. (2002) [Pubmed]
  27. The effect of arbutin on membrane integrity during drying is mediated by stabilization of the lamellar phase in the presence of nonbilayer-forming lipids. Oliver, A.E., Hincha, D.K., Tsvetkova, N.M., Vigh, L., Crowe, J.H. Chem. Phys. Lipids (2001) [Pubmed]
  28. Phenolics of Arbutus unedo L. (Ericaceae) fruits: identification of anthocyanins and gallic acid derivatives. Pawlowska, A.M., De Leo, M., Braca, A. J. Agric. Food Chem. (2006) [Pubmed]
  29. Microdialysis sampling coupled to on-line high-performance liquid chromatography for determination of arbutin in whitening cosmetics. Lin, C.H., Wu, H.L., Huang, Y.L. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. (2005) [Pubmed]
WikiGenes - Universities