The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Cryptochrome     2-[(2E,4E,6E,8E,10E,12E,14E)- 15-(4,4,7a...

Synonyms: AC1NT9R9
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Cryptochrome

 

Psychiatry related information on Cryptochrome

  • Examination of the clock gene Cryptochrome 1 in bipolar disorder: mutational analysis and absence of evidence for linkage or association [5].
  • However, we have shown that CRYPTOCHROME (CRY) has a light-independent function in the oscillator that controls olfaction rhythms, suggesting that CRY may function within the oscillator mechanism itself as it does in mammals [6].
 

High impact information on Cryptochrome

  • Humans and mice have two cryptochrome genes, CRY1 and CRY2, that are differentially expressed in the retina relative to the opsin-based visual photoreceptors [7].
  • Essentially, the activity of the transcription factors BMAL1 (also known as MOP3) and CLOCK is rhythmically counterbalanced by Period (PER) and Cryptochrome (CRY) proteins to govern time of day-dependent gene expression [8].
  • Here, we developed a molecular genetic screen in mammalian cells to identify mutants of the circadian transcriptional activators CLOCK and BMAL1, which were uncoupled from CRYPTOCHROME (CRY)-mediated transcriptional repression [9].
  • This includes major components of the pacemaker program, as Clock also activates the rhythmic expression of cryptochrome, a gene that CLOCK normally represses [10].
  • Cryptochrome blue light photoreceptors share sequence similarity to photolyases, flavoproteins that mediate light-dependent DNA repair [11].
 

Biological context of Cryptochrome

 

Anatomical context of Cryptochrome

  • To provide a link between the clock and the sun compass, we identified a CRYPTOCHROME-staining neural pathway that likely connects the circadian clock to polarized light input entering brain [16].
  • At the molecular level, the light induction of c-fos transcription in the suprachiasmatic nucleus was markedly reduced in the triple mutant mouse compared with either rd/rd or cryptochrome mutant mice [17].
  • Functional properties and regulatory complexity of a minimal RBCS light-responsive unit activated by phytochrome, cryptochrome, and plastid signals [18].
  • An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles [19].
  • Activation of anion channels, which transiently depolarizes the plasma membrane within seconds of BL, is an early event in the cryptochrome signaling pathway leading to a phase of growth inhibition that replaces the transient phototropin-dependent phase after approximately 30 min of BL [20].
 

Associations of Cryptochrome with other chemical compounds

 

Gene context of Cryptochrome

 

Analytical, diagnostic and therapeutic context of Cryptochrome

References

  1. Identification of a new cryptochrome class. Structure, function, and evolution. Brudler, R., Hitomi, K., Daiyasu, H., Toh, H., Kucho, K., Ishiura, M., Kanehisa, M., Roberts, V.A., Todo, T., Tainer, J.A., Getzoff, E.D. Mol. Cell (2003) [Pubmed]
  2. Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light. Lin, C., Ahmad, M., Gordon, D., Cashmore, A.R. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  3. Disruption of Cryptochrome partially restores circadian rhythmicity to the arrhythmic period mutant of Drosophila. Collins, B.H., Dissel, S., Gaten, E., Rosato, E., Kyriacou, C.P. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  4. Purification and characterization of three members of the photolyase/cryptochrome family glue-light photoreceptors from Vibrio cholerae. Worthington, E.N., Kavakli, I.H., Berrocal-Tito, G., Bondo, B.E., Sancar, A. J. Biol. Chem. (2003) [Pubmed]
  5. Examination of the clock gene Cryptochrome 1 in bipolar disorder: mutational analysis and absence of evidence for linkage or association. Nievergelt, C.M., Kripke, D.F., Remick, R.A., Sadovnick, A.D., McElroy, S.L., Keck, P.E., Kelsoe, J.R. Psychiatr. Genet. (2005) [Pubmed]
  6. Central and peripheral circadian oscillators in Drosophila. Hardin, P.E., Krishnan, B., Houl, J.H., Zheng, H., Ng, F.S., Dryer, S.E., Glossop, N.R. Novartis Found. Symp. (2003) [Pubmed]
  7. Cryptochrome: the second photoactive pigment in the eye and its role in circadian photoreception. Sancar, A. Annu. Rev. Biochem. (2000) [Pubmed]
  8. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Ripperger, J.A., Schibler, U. Nat. Genet. (2006) [Pubmed]
  9. Feedback repression is required for mammalian circadian clock function. Sato, T.K., Yamada, R.G., Ukai, H., Baggs, J.E., Miraglia, L.J., Kobayashi, T.J., Welsh, D.K., Kay, S.A., Ueda, H.R., Hogenesch, J.B. Nat. Genet. (2006) [Pubmed]
  10. Drosophila clock can generate ectopic circadian clocks. Zhao, J., Kilman, V.L., Keegan, K.P., Peng, Y., Emery, P., Rosbash, M., Allada, R. Cell (2003) [Pubmed]
  11. The C termini of Arabidopsis cryptochromes mediate a constitutive light response. Yang, H.Q., Wu, Y.J., Tang, R.H., Liu, D., Liu, Y., Cashmore, A.R. Cell (2000) [Pubmed]
  12. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Emery, P., So, W.V., Kaneko, M., Hall, J.C., Rosbash, M. Cell (1998) [Pubmed]
  13. Cryptochrome blue-light photoreceptors of Arabidopsis implicated in phototropism. Ahmad, M., Jarillo, J.A., Smirnova, O., Cashmore, A.R. Nature (1998) [Pubmed]
  14. Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation. Shalitin, D., Yang, H., Mockler, T.C., Maymon, M., Guo, H., Whitelam, G.C., Lin, C. Nature (2002) [Pubmed]
  15. Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Wang, H., Ma, L.G., Li, J.M., Zhao, H.Y., Deng, X.W. Science (2001) [Pubmed]
  16. Connecting the navigational clock to sun compass input in monarch butterfly brain. Sauman, I., Briscoe, A.D., Zhu, H., Shi, D., Froy, O., Stalleicken, J., Yuan, Q., Casselman, A., Reppert, S.M. Neuron (2005) [Pubmed]
  17. Functional redundancy of cryptochromes and classical photoreceptors for nonvisual ocular photoreception in mice. Selby, C.P., Thompson, C., Schmitz, T.M., Van Gelder, R.N., Sancar, A. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  18. Functional properties and regulatory complexity of a minimal RBCS light-responsive unit activated by phytochrome, cryptochrome, and plastid signals. Martínez-Hernández, A., López-Ochoa, L., Argüello-Astorga, G., Herrera-Estrella, L. Plant Physiol. (2002) [Pubmed]
  19. An Arabidopsis protein closely related to Synechocystis cryptochrome is targeted to organelles. Kleine, T., Lockhart, P., Batschauer, A. Plant J. (2003) [Pubmed]
  20. Unexpected roles for cryptochrome 2 and phototropin revealed by high-resolution analysis of blue light-mediated hypocotyl growth inhibition. Folta, K.M., Spalding, E.P. Plant J. (2001) [Pubmed]
  21. Cryptochrome light signals control development to suppress auxin sensitivity in the moss Physcomitrella patens. Imaizumi, T., Kadota, A., Hasebe, M., Wada, M. Plant Cell (2002) [Pubmed]
  22. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2. Lin, C., Yang, H., Guo, H., Mockler, T., Chen, J., Cashmore, A.R. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  23. A single chromoprotein with triple chromophores acts as both a phytochrome and a phototropin. Kanegae, T., Hayashida, E., Kuramoto, C., Wada, M. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  24. HY5 is a point of convergence between cryptochrome and cytokinin signalling pathways in Arabidopsis thaliana. Vandenbussche, F., Habricot, Y., Condiff, A.S., Maldiney, R., Straeten, D.V., Ahmad, M. Plant J. (2007) [Pubmed]
  25. Light induces accumulation of isocitrate lyase mRNA in a carotenoid-deficient mutant of Chlamydomonas reinhardtii. Petridou, S., Foster, K., Kindle, K. Plant Mol. Biol. (1997) [Pubmed]
  26. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Etchegaray, J.P., Lee, C., Wade, P.A., Reppert, S.M. Nature (2003) [Pubmed]
  27. SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Guo, H., Mockler, T., Duong, H., Lin, C. Science (2001) [Pubmed]
  28. VRILLE feeds back to control circadian transcription of Clock in the Drosophila circadian oscillator. Glossop, N.R., Houl, J.H., Zheng, H., Ng, F.S., Dudek, S.M., Hardin, P.E. Neuron (2003) [Pubmed]
  29. An enzyme similar to animal type II photolyases mediates photoreactivation in Arabidopsis. Ahmad, M., Jarillo, J.A., Klimczak, L.J., Landry, L.G., Peng, T., Last, R.L., Cashmore, A.R. Plant Cell (1997) [Pubmed]
  30. Circadian genes in a blind subterranean mammal III: molecular cloning and circadian regulation of cryptochrome genes in the blind subterranean mole rat, Spalax ehrenbergi superspecies. Avivi, A., Oster, H., Joel, A., Beiles, A., Albrecht, U., Nevo, E. J. Biol. Rhythms (2004) [Pubmed]
  31. Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass. Möller, A., Sagasser, S., Wiltschko, W., Schierwater, B. Naturwissenschaften (2004) [Pubmed]
  32. Crystallization and preliminary X-ray analysis of cryptochrome 3 from Arabidopsis thaliana. Pokorny, R., Klar, T., Essen, L.O., Batschauer, A. Acta Crystallograph. Sect. F Struct. Biol. Cryst. Commun. (2005) [Pubmed]
  33. Cloning and circadian expression of rat Cry1. Park, K., Kang, H.M. Mol. Cells (2004) [Pubmed]
  34. JETLAG resets the Drosophila circadian clock by promoting light-induced degradation of TIMELESS. Koh, K., Zheng, X., Sehgal, A. Science (2006) [Pubmed]
 
WikiGenes - Universities