The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

THENOYLTRIFLUOROACETONE     4,4,4-trifluoro-1-thiophen-2- yl-butane-1,3...

Synonyms: HTTA, ttfa, TOS-BB-0669, ARONIS021027, SureCN195358, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of THENOYLTRIFLUOROACETONE

  • Hyperglycemia potentiated both platelet aggregation and the subsequent release of platelet-derived growth factor AB induced by a nonaggregating subthreshold concentration of collagen, which were also completely inhibited by TTFA or CCCP [1].
  • One exception is that whereas electron exchange between the mammalian enzyme and its quinone pool is inhibited by thenoyltrifluoroacetone and carboxanilides, the enzyme from E. coli is not sensitive to these inhibitors [2].
 

High impact information on THENOYLTRIFLUOROACETONE

  • Kinetic and electron paramagnetic resonance studies have established that the specific binding site of carboxanilides and of thenoyltrifluoroacetone responsible for the inhibition is the same [3].
  • The increases in ROSs in response to hypertonic treatment were completely blocked by any one of the mitochondrial inhibitors tested, such as rotenone, thenoyltrifluoroacetone, or carbonyl cyanide m-chlorophenylhydrazone, associated with remarkable inhibition of COX-2 expression [4].
  • Chronic overexpression of catalase or acute in vitro treatment with rotenone, an inhibitor of mitochondrial complex I, or thenoyltrifluoroacetone, an inhibitor of mitochondrial complex II, eliminated excess ROS production in diabetic cardiomyocytes [5].
  • Finally, we demonstrated that specific inhibition of complex II with 2-thenoyltrifluoroacetone induced overall delay of the cell cycle, suggesting that the delayed arrest by desferroxamine mesylate might be in part due to inhibition of complex II activity [6].
  • Rotenone, thenoyltrifluoroacetone (TTFA), carbonyl cyanide m-chlorophenylhydrazone (CCCP), Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), uncoupling protein-1 (UCP1) HVJ-liposomes, or manganese superoxide dismutase (MnSOD) HVJ-liposomes completely prevented the effect of leptin, suggesting that ROS arise from mitochondrial electron transport [7].
 

Chemical compound and disease context of THENOYLTRIFLUOROACETONE

 

Biological context of THENOYLTRIFLUOROACETONE

 

Anatomical context of THENOYLTRIFLUOROACETONE

 

Associations of THENOYLTRIFLUOROACETONE with other chemical compounds

 

Gene context of THENOYLTRIFLUOROACETONE

 

Analytical, diagnostic and therapeutic context of THENOYLTRIFLUOROACETONE

References

  1. Hyperglycemia potentiates collagen-induced platelet activation through mitochondrial superoxide overproduction. Yamagishi, S.I., Edelstein, D., Du, X.L., Brownlee, M. Diabetes (2001) [Pubmed]
  2. Inhibitor probes of the quinone binding sites of mammalian complex II and Escherichia coli fumarate reductase. Yankovskaya, V., Sablin, S.O., Ramsay, R.R., Singer, T.P., Ackrell, B.A., Cecchini, G., Miyoshi, H. J. Biol. Chem. (1996) [Pubmed]
  3. Reaction site of carboxanilides and of thenoyltrifluoroacetone in complex II. Ramsay, R.R., Ackrell, B.A., Coles, C.J., Singer, T.P., White, G.A., Thorn, G.D. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  4. Hypertonic induction of COX-2 in collecting duct cells by reactive oxygen species of mitochondrial origin. Yang, T., Zhang, A., Honeggar, M., Kohan, D.E., Mizel, D., Sanders, K., Hoidal, J.R., Briggs, J.P., Schnermann, J.B. J. Biol. Chem. (2005) [Pubmed]
  5. Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. Ye, G., Metreveli, N.S., Donthi, R.V., Xia, S., Xu, M., Carlson, E.C., Epstein, P.N. Diabetes (2004) [Pubmed]
  6. Complex II defect via down-regulation of iron-sulfur subunit induces mitochondrial dysfunction and cell cycle delay in iron chelation-induced senescence-associated growth arrest. Yoon, Y.S., Byun, H.O., Cho, H., Kim, B.K., Yoon, G. J. Biol. Chem. (2003) [Pubmed]
  7. Leptin induces mitochondrial superoxide production and monocyte chemoattractant protein-1 expression in aortic endothelial cells by increasing fatty acid oxidation via protein kinase A. Yamagishi , S.I., Edelstein, D., Du, X.L., Kaneda, Y., Guzmán, M., Brownlee, M. J. Biol. Chem. (2001) [Pubmed]
  8. Inhibition of oxidative phosphorylation underlies the antiproliferative and proapoptotic effects of mofarotene (Ro 40-8757) in Burkitt's lymphoma cells. Cariati, R., Zancai, P., Righetti, E., Rizzo, S., De Rossi, A., Boiocchi, M., Dolcetti, R. Oncogene (2003) [Pubmed]
  9. Increased manganese superoxide dismutase activity, protein, and mRNA levels and concurrent induction of tumor necrosis factor alpha in radiation-initiated Syrian hamster cells. Otero, G., Avila, M.A., Emfietzoglou, D., Clerch, L.B., Massaro, D., Notario, V. Mol. Carcinog. (1996) [Pubmed]
  10. Effect of thenoyltrifluoroacetone on oxygen consumption and energy conservation in isolated rat liver mitochondria. Ulvik, R., Romslo, I. FEBS Lett. (1975) [Pubmed]
  11. Microvascular dysfunction after transient high glucose is caused by superoxide-dependent reduction in the bioavailability of NO and BH(4). Bagi, Z., Toth, E., Koller, A., Kaley, G. Am. J. Physiol. Heart Circ. Physiol. (2004) [Pubmed]
  12. The effects of bathophenanthroline, bathophenanthrolinesulphonate and 2-thenoyltrifluoroacetone on mung-bean mitochondria and submitochondrial particles. Rich, P.R., Moore, A.L., Bonner, W.D. Biochem. J. (1977) [Pubmed]
  13. Preconditioning protects endothelium by preventing ET-1-induced activation of NADPH oxidase and xanthine oxidase in post-ischemic heart. Duda, M., Konior, A., Klemenska, E., Beresewicz, A. J. Mol. Cell. Cardiol. (2007) [Pubmed]
  14. Mitochondrial electron transport inhibitors cause lipid peroxidation-dependent and -independent cell death: protective role of antioxidants. Zhang, J.G., Tirmenstein, M.A., Nicholls-Grzemski, F.A., Fariss, M.W. Arch. Biochem. Biophys. (2001) [Pubmed]
  15. Generation of reactive oxygen species is an early event in dolichyl phosphate-induced apoptosis. Yokoyama, Y., Nohara, K., Okubo, T., Kano, I., Akagawa, K., Kano, K. J. Cell. Biochem. (2007) [Pubmed]
  16. Growth inhibition dependent on reactive oxygen species generated by C9-UK-2A, a derivative of the antifungal antibiotic UK-2A, in Saccharomyces cerevisiae. Fujita, K., Tani, K., Usuki, Y., Tanaka, T., Taniguchi, M. J. Antibiot. (2004) [Pubmed]
  17. Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-alpha is mediated by ceramide. Corda, S., Laplace, C., Vicaut, E., Duranteau, J. Am. J. Respir. Cell Mol. Biol. (2001) [Pubmed]
  18. ATP depletion does not account for apoptosis induced by inhibition of mitochondrial electron transport chain in human dopaminergic cells. Watabe, M., Nakaki, T. Neuropharmacology (2007) [Pubmed]
  19. Hypoxic increase in nitric oxide generation of rat sensory neurons requires activation of mitochondrial complex II and voltage-gated calcium channels. Henrich, M., Paddenberg, R., Haberberger, R.V., Scholz, A., Gruss, M., Hempelmann, G., Kummer, W. Neuroscience (2004) [Pubmed]
  20. Arylamination and arylation of 4,4,4-trifluoro-1-phenyl-1,3-butanedione with N-acetoxy derivatives of 2-aminofluorene. Wang, C.Y., Nagase, H., Lee, M.S., Ksebati, M.B. Chem. Res. Toxicol. (1992) [Pubmed]
  21. Nramp transfection transfers Ity/Lsh/Bcg-related pleiotropic effects on macrophage activation: influence on oxidative burst and nitric oxide pathways. Barton, C.H., Whitehead, S.H., Blackwell, J.M. Mol. Med. (1995) [Pubmed]
  22. Thenoyltrifluoroacetone, a potent inhibitor of carboxylesterase activity. Zhang, J.G., Fariss, M.W. Biochem. Pharmacol. (2002) [Pubmed]
  23. Crocidolite activates NF-kappa B and MIP-2 gene expression in rat alveolar epithelial cells. Role of mitochondrial-derived oxidants. Driscoll, K.E., Carter, J.M., Howard, B.W., Hassenbein, D., Janssen, Y.M., Mossman, B.T. Environ. Health Perspect. (1998) [Pubmed]
  24. The effect of electron transport (ET) inhibitors and thiabendazole on the fumarate reductase (FR) and succinate dehydrogenase (SDH) of Strongyloides ratti infective (L3) larvae. Armson, A., Grubb, W.B., Mendis, A.H. Int. J. Parasitol. (1995) [Pubmed]
  25. Characterization of the respiratory chain of Helicobacter pylori. Chen, M., Andersen, L.P., Zhai, L., Kharazmi, A. FEMS Immunol. Med. Microbiol. (1999) [Pubmed]
  26. Histoenzymology of oxidases and dehydrogenases in peripheral blood lymphocytes and monocytes for the study of mitochondrial oxidative phosphorylation. de Halac, I.N., Bacman, S.R., de Kremer, R.D. Histochem. J. (2000) [Pubmed]
  27. Low-temperature electrothermal vaporization of thenoyltrifluoroacetone complex of Sc(III) and Y(III) for sample introduction in an inductively coupled plasma atomic emission spectrometry, and their determination in biological samples. Fan, Z., Hu, B., Jiang, Z., Li, S. Analytical and bioanalytical chemistry. (2004) [Pubmed]
  28. The isolation and some properties of the membrane-bound lactate dehydrogenase of Paracoccus denitrificans. Zboril, P., Wernerová, V. Biochem. Mol. Biol. Int. (1996) [Pubmed]
  29. Hypoxic vasoconstriction of partial muscular intra-acinar pulmonary arteries in murine precision cut lung slices. Paddenberg, R., König, P., Faulhammer, P., Goldenberg, A., Pfeil, U., Kummer, W. Respir. Res. (2006) [Pubmed]
 
WikiGenes - Universities