The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

AC1L19T2     N-[7,11-bis[(2,3- dihydroxyphenyl)carbonyla...

Synonyms:
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of enterobactin

 

High impact information on enterobactin

  • Our findings indicate that the iroA gene cluster allows bacteria to evade this component of the innate immune system, rejuvenating their Ent-mediated iron-acquisition pathway and playing an important role in their virulence [2].
  • We report the use of combinatorial mutagenesis coupled with in vivo selection for the production of the Escherichia coli NRPS product enterobactin to map the surface of the aryl carrier protein (ArCP) domain of EntB that interacts with the downstream elongation module EntF [6].
  • Secreted lipocalin 2 (Lcn2) sequesters the Escherichia coli siderophore enterobactin (Ent), preventing E. coli from acquiring iron and protecting mammals from infection by E. coli [2].
  • Here, we report the purification of the IroB protein and its characterization as the Ent C-glucosyltransferase [7].
  • Pathogenic strains of Escherichia coli and Salmonella enterica modify the tricatecholic siderophore enterobactin (Ent) by glucosylation of three aryl carbon atoms, a process controlled by the iroA locus [Hantke, K., Nicholson, G., Rabsch, W. & Winkelmann, G. (2003) Proc. Natl. Acad. Sci. USA 100, 3677-3682] [7].
 

Chemical compound and disease context of enterobactin

 

Biological context of enterobactin

  • Double mutagenesis of a positive charge cluster in the ligand-binding site of the ferric enterobactin receptor, FepA [12].
  • Transcriptional mapping and nucleotide sequence of the Escherichia coli fepA-fes enterobactin region. Identification of a unique iron-regulated bidirectional promoter [13].
  • Fes effectively catalyzed the hydrolysis of both enterobactin and its ferric complex, exhibiting a 4-fold greater activity on the free ligand [14].
  • Analysis of a fluorescent FepA derivative showed that ferric enterobactin and colicin B adsorbed with biphasic kinetics, suggesting that both ligands bind in at least two distinct steps, an initial rapid stage and a subsequent slower step, that presumably establishes a transport-competent complex [15].
  • In Escherichia coli, the outer membrane protein FepA is a receptor for the siderophore complex ferric enterobactin and for colicins B and D. To identify protein domains important for FepA activity, the effects of deletion and linker insertion mutations on receptor structure and function were examined [16].
 

Anatomical context of enterobactin

  • The mutagenesis results suggested the existence of dual ligand binding sites in the FepA vestibule, and measurements of the rate of ferric enterobactin adsorption to fluoresceinated FepA mutant proteins confirmed this conclusion [17].
  • The bacteriostatic phase could be abolished by adding sufficient iron to saturate the lactoferrin in human milk, and also by adding supernatant from a 24-h milk culture or by adding enterobactin, an enterobacterial iron chelator [18].
  • A shuA mutant lacking the outer membrane receptor for heme, an entB mutant defective in enterobactin synthesis, and a shuA entB double mutant each were able to invade cultured cells, multiply intracellularly, and form wild-type plaques [19].
  • In contrast to enterobactin, aerobactin was detected in the duodenum, jejunum, ileum, cecum, liver, spleen, kidney, urine, cerebrospinal fluid, and bile [20].
  • Two procedures demonstrated that the enzymes were enriched in a minor membrane fraction of buoyant density intermediate between that of cytoplasmic and outer membranes, providing indirect support for the notion that these proteins have a role in enterobactin excretion as well as synthesis [21].
 

Associations of enterobactin with other chemical compounds

 

Gene context of enterobactin

 

Analytical, diagnostic and therapeutic context of enterobactin

References

  1. The EntF and EntE adenylation domains of Escherichia coli enterobactin synthetase: sequestration and selectivity in acyl-AMP transfers to thiolation domain cosubstrates. Ehmann, D.E., Shaw-Reid, C.A., Losey, H.C., Walsh, C.T. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  2. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. Fischbach, M.A., Lin, H., Zhou, L., Yu, Y., Abergel, R.J., Liu, D.R., Raymond, K.N., Wanner, B.L., Strong, R.K., Walsh, C.T., Aderem, A., Smith, K.D. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  3. Enterobactin: an archetype for microbial iron transport. Raymond, K.N., Dertz, E.A., Kim, S.S. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  4. Chrysobactin-dependent iron acquisition in Erwinia chrysanthemi. Functional study of a homolog of the Escherichia coli ferric enterobactin esterase. Rauscher, L., Expert, D., Matzanke, B.F., Trautwein, A.X. J. Biol. Chem. (2002) [Pubmed]
  5. Expression of the ferric enterobactin receptor (PfeA) of Pseudomonas aeruginosa: involvement of a two-component regulatory system. Dean, C.R., Poole, K. Mol. Microbiol. (1993) [Pubmed]
  6. A protein interaction surface in nonribosomal peptide synthesis mapped by combinatorial mutagenesis and selection. Lai, J.R., Fischbach, M.A., Liu, D.R., Walsh, C.T. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  7. In vitro characterization of IroB, a pathogen-associated C-glycosyltransferase. Fischbach, M.A., Lin, H., Liu, D.R., Walsh, C.T. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  8. Corynebactin and enterobactin: related siderophores of opposite chirality. Bluhm, M.E., Kim, S.S., Dertz, E.A., Raymond, K.N. J. Am. Chem. Soc. (2002) [Pubmed]
  9. Structure of the EntB Multidomain Nonribosomal Peptide Synthetase and Functional Analysis of Its Interaction with the EntE Adenylation Domain. Drake, E.J., Nicolai, D.A., Gulick, A.M. Chem. Biol. (2006) [Pubmed]
  10. Aerobactin-mediated utilization of transferrin iron. Konopka, K., Bindereif, A., Neilands, J.B. Biochemistry (1982) [Pubmed]
  11. The pyoverdin receptor FpvA, a TonB-dependent receptor involved in iron uptake by Pseudomonas aeruginosa (review). Folschweiller, N., Schalk, I.J., Celia, H., Kieffer, B., Abdallah, M.A., Pattus, F. Mol. Membr. Biol. (2000) [Pubmed]
  12. Double mutagenesis of a positive charge cluster in the ligand-binding site of the ferric enterobactin receptor, FepA. Newton, S.M., Allen, J.S., Cao, Z., Qi, Z., Jiang, X., Sprencel, C., Igo, J.D., Foster, S.B., Payne, M.A., Klebba, P.E. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  13. Transcriptional mapping and nucleotide sequence of the Escherichia coli fepA-fes enterobactin region. Identification of a unique iron-regulated bidirectional promoter. Pettis, G.S., Brickman, T.J., McIntosh, M.A. J. Biol. Chem. (1988) [Pubmed]
  14. Overexpression and purification of ferric enterobactin esterase from Escherichia coli. Demonstration of enzymatic hydrolysis of enterobactin and its iron complex. Brickman, T.J., McIntosh, M.A. J. Biol. Chem. (1992) [Pubmed]
  15. Biphasic binding kinetics between FepA and its ligands. Payne, M.A., Igo, J.D., Cao, Z., Foster, S.B., Newton, S.M., Klebba, P.E. J. Biol. Chem. (1997) [Pubmed]
  16. Molecular analysis of the Escherichia coli ferric enterobactin receptor FepA. Armstrong, S.K., Francis, C.L., McIntosh, M.A. J. Biol. Chem. (1990) [Pubmed]
  17. Aromatic components of two ferric enterobactin binding sites in Escherichia coli FepA. Cao, Z., Qi, Z., Sprencel, C., Newton, S.M., Klebba, P.E. Mol. Microbiol. (2000) [Pubmed]
  18. Role of antibody and enterobactin in controlling growth of Escherichia coli in human milk and acquisition of lactoferrin- and transferrin-bound iron by Escherichia coli. Brock, J.H., Pickering, M.G., McDowall, M.C., Deacon, A.G. Infect. Immun. (1983) [Pubmed]
  19. TonB is required for intracellular growth and virulence of Shigella dysenteriae. Reeves, S.A., Torres, A.G., Payne, S.M. Infect. Immun. (2000) [Pubmed]
  20. Role of aerobactin in systemic spread of an opportunistic strain of Escherichia coli from the intestinal tract of gnotobiotic lambs. Der Vartanian, M., Jaffeux, B., Contrepois, M., Chavarot, M., Girardeau, J.P., Bertin, Y., Martin, C. Infect. Immun. (1992) [Pubmed]
  21. Membrane association of the Escherichia coli enterobactin synthase proteins EntB/G, EntE, and EntF. Hantash, F.M., Earhart, C.F. J. Bacteriol. (2000) [Pubmed]
  22. Exchangeability of N termini in the ligand-gated porins of Escherichia coli. Scott, D.C., Cao, Z., Qi, Z., Bauler, M., Igo, J.D., Newton, S.M., Klebba, P.E. J. Biol. Chem. (2001) [Pubmed]
  23. Enterobactin protonation and iron release: structural characterization of the salicylate coordination shift in ferric enterobactin. Abergel, R.J., Warner, J.A., Shuh, D.K., Raymond, K.N. J. Am. Chem. Soc. (2006) [Pubmed]
  24. Export of the siderophore enterobactin in Escherichia coli: involvement of a 43 kDa membrane exporter. Furrer, J.L., Sanders, D.N., Hook-Barnard, I.G., McIntosh, M.A. Mol. Microbiol. (2002) [Pubmed]
  25. The Escherichia coli enterobactin biosynthesis gene, entD: nucleotide sequence and membrane localization of its protein product. Armstrong, S.K., Pettis, G.S., Forrester, L.J., McIntosh, M.A. Mol. Microbiol. (1989) [Pubmed]
  26. Organization of genes encoding membrane proteins of the Escherichia coli ferrienterobactin permease. Chenault, S.S., Earhart, C.F. Mol. Microbiol. (1991) [Pubmed]
  27. Overexpression, purification, and characterization of isochorismate synthase (EntC), the first enzyme involved in the biosynthesis of enterobactin from chorismate. Liu, J., Quinn, N., Berchtold, G.A., Walsh, C.T. Biochemistry (1990) [Pubmed]
  28. Nucleotide sequence and transcriptional organization of the Escherichia coli enterobactin biosynthesis cistrons entB and entA. Nahlik, M.S., Brickman, T.J., Ozenberger, B.A., McIntosh, M.A. J. Bacteriol. (1989) [Pubmed]
  29. Iron uptake in Plesiomonas shigelloides: cloning of the genes for the heme-iron uptake system. Daskaleros, P.A., Stoebner, J.A., Payne, S.M. Infect. Immun. (1991) [Pubmed]
  30. Dissection of the EntF condensation domain boundary and active site residues in nonribosomal peptide synthesis. Roche, E.D., Walsh, C.T. Biochemistry (2003) [Pubmed]
  31. TolC is involved in enterobactin efflux across the outer membrane of Escherichia coli. Bleuel, C., Grosse, C., Taudte, N., Scherer, J., Wesenberg, D., Krauss, G.J., Nies, D.H., Grass, G. J. Bacteriol. (2005) [Pubmed]
  32. Purification and crystallization of ferric enterobactin receptor protein, FepA, from the outer membranes of Escherichia coli UT5600/pBB2. Jalal, M.A., van der Helm, D. FEBS Lett. (1989) [Pubmed]
 
WikiGenes - Universities