The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Chinolin     quinoline

Synonyms: Quinolin, Chinoline, QUINOLINE, benzazine, Chinoleine, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of quinoline

 

Psychiatry related information on quinoline

  • Effects of 2-[2-(1-benzylpiperidin-4-yl)ethyl]-2,3-dihydro-9-methoxy-1H-pyrrolo[3,4-b]quinolin-1-one hemifumarate (T-82), a new quinoline derivative, on drug- and basal forebrain lesion-induced amnesia models were examined in rats [4].
  • In order to discover a medicine effective against Alzheimer's disease, we synthesized a series of quinoline derivatives having a characteristic 1-azabicyclo[3.3.0]octane amine ring, and performed pharmacological evaluation of them [5].
 

High impact information on quinoline

  • Linomide, a quinoline 3-carboxamide, inhibits apoptosis of B and T cells induced by various stimuli including viruses, superantigens, and glucocorticoids [6].
  • Enzyme preparations from rats pretreated with P-448-dependent aryl hydrocarbon hydroxylase inducers [3-methylcholanthrene (MCA) and beta-naphthoflavone] and MCA-treated "responsive" C57BL mice also metabolized quinoline to a mutagen, but phenobarbital and pregnenolone-16alpha-carbonitrile pretreatment did not yield active preparations [1].
  • Some possible ways for discovery of new drugs, especially the design of trioxaquines, new active molecules recently patented that have been prepared by covalent attachment of a trioxane residue having alkylating ability to a quinoline moiety known to easily penetrate within infected erythrocytes, are presented [7].
  • These findings implicate the charged Glu441,Ile442,Glu443 domain as necessary for a functional CHE catalytic triad as well as for binding quinoline derivatives [8].
  • We have identified by Fluorescence Resonance Energy Transfer a new series of quinoline-based G-quadruplex ligands that also exhibit potent and specific anti-telomerase activity with IC50 in the nanomolar concentration range [9].
 

Chemical compound and disease context of quinoline

 

Biological context of quinoline

  • Specificity of rabbit cytochrome P-450 isozymes involved in the metabolic activation of the food derived mutagen 2-amino-3-methylimidazo[4,5-f] quinoline [15].
  • Functional studies using the activation of the food-derived heterocyclic amine MeIQ (2-amino-3,4-dimethylimadazo [4,5-f] quinoline) to a mutagen in the Ames test as an indicator of CYP1A expression confirmed this down-regulation [16].
  • These data suggest that rat colon adenocarcinomas induced by 2-amino-1-methyl-6- phenylimidazo-[4,5-b]pyridine but not 2-amino-3-methylimidazo[4,5-f] quinoline show a trait of microsatellite instability [17].
  • Of this series, an aryl-substituted dihydropyrrolopyrazole quinoline (DHP-2) demonstrated an IC50 of 70 nM for inhibition of pJNK formation in COS-7 cell MLK7/JNK co-transfection assays [18].
  • These data suggest a common mechanism for quinoline antimalarial action dependent on drug interaction with both heme and heme polymer [19].
 

Anatomical context of quinoline

  • These data counter previous conclusions regarding the lack of quinoline association with hemozoin, explain the exaggerated accumulation of quinolines in the plasmodium digestive vacuole, and suggest that a quinoline heme complex incorporates into the growing polymer to terminate chain extension, blocking further sequestration of toxic heme [20].
  • Their basicity and lipophilicity at physiologic pH, which affect their disposition in the gastrointestinal tract, are weakened or strengthened by substitutions on the quinoline nucleus [21].
  • The abilities of the quinoline inhibitors to interact with FLAP correlated well with their abilities to inhibit leukotriene synthesis in human polymorphonuclear leukocytes [22].
  • Quinoline in the presence of microsomal activation exhibits mutagenic activity in Salmonella typhimurium TA100 and induces unscheduled DNA synthesis (UDS) in rat hepatocytes [23].
  • A series of tetracyclic quinoline- and quinoxalinecarboxamides were prepared, and their cytotoxicities were evaluated in a series of murine human tumor cell lines [24].
 

Associations of quinoline with other chemical compounds

  • After purification by ion-exchange chromatography, the spectroscopic, chemical, and enzymatic analyses revealed that it is a novel quinoline derivative: xanthurenic acid 8-O-beta-D-glucoside [25].
  • A new fluorescent intracellular pH indicator is described ("quene 1") which is related to the tetracarboxylate Ca2+ indicator based on the quinoline fluorophor ("quin 2") [26].
  • Recent studies have highlighted the importance of a parasite protein referred to as the chloroquine resistance transporter (PfCRT) in the molecular basis of Plasmodium falciparum resistance to the quinoline antimalarials [27].
  • The zwitterionic adduct between a cinchona alkaloid and ketone is adsorbed on Pt through the quinoline ring and two heteroatoms and is subsequently reduced with inversion [28].
  • In this study, we used a functional proteomics approach that exploited the structural similarities between the quinoline compounds and the purine ring of ATP to identify quinoline-binding proteins [29].
 

Gene context of quinoline

 

Analytical, diagnostic and therapeutic context of quinoline

References

  1. Quinoline: conversion to a mutagen by human and rodent liver. Hollstein, M., Talcott, R., Wei, E. J. Natl. Cancer Inst. (1978) [Pubmed]
  2. Carcinogenic activity of quinoline on rat liver. Hirao, K., Shinohara, Y., Tsuda, H., Fukushima, S., Takahashi, M. Cancer Res. (1976) [Pubmed]
  3. Increased expression of nucleoside diphosphate kinase/nm23 and c-Ha-ras mRNA is associated with spontaneous lung metastasis in rat-transplantable osteosarcomas. Honoki, K., Tsutsumi, M., Miyauchi, Y., Mii, Y., Tsujiuchi, T., Morishita, T., Miura, S., Aoki, M., Kobayashi, E., Tamai, S. Cancer Res. (1993) [Pubmed]
  4. Effects of T-82, a novel acetylcholinesterase inhibitor, on impaired learning and memory in passive avoidance task in rats. Isomae, K., Morimoto, S., Hasegawa, H., Morita, K., Kamei, J. Eur. J. Pharmacol. (2003) [Pubmed]
  5. Synthesis and muscarinic activity of a series of quinolines and naphthalenes with a 1-azabicyclo[3.3.0]octane moiety. Suzuki, T., Usui, T., Oka, M., Suzuki, T., Kataoka, T. Chem. Pharm. Bull. (1998) [Pubmed]
  6. Linomide prevents the lethal effect of anti-Fas antibody and reduces Fas-mediated ceramide production in mouse hepatocytes. Redondo, C., Flores, I., Gonzalez, A., Nagata, S., Carrera, A.C., Merida, I., Martinez-A, C. J. Clin. Invest. (1996) [Pubmed]
  7. From mechanistic studies on artemisinin derivatives to new modular antimalarial drugs. Robert, A., Dechy-Cabaret, O., Cazelles, J., Meunier, B. Acc. Chem. Res. (2002) [Pubmed]
  8. Intramolecular relationships in cholinesterases revealed by oocyte expression of site-directed and natural variants of human BCHE. Neville, L.F., Gnatt, A., Loewenstein, Y., Seidman, S., Ehrlich, G., Soreq, H. EMBO J. (1992) [Pubmed]
  9. Cell senescence and telomere shortening induced by a new series of specific G-quadruplex DNA ligands. Riou, J.F., Guittat, L., Mailliet, P., Laoui, A., Renou, E., Petitgenet, O., Mégnin-Chanet, F., Hélène, C., Mergny, J.L. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  10. Cloning, expression, and sequence analysis of the three genes encoding quinoline 2-oxidoreductase, a molybdenum-containing hydroxylase from Pseudomonas putida 86. Bläse, M., Bruntner, C., Tshisuaka, B., Fetzner, S., Lingens, F. J. Biol. Chem. (1996) [Pubmed]
  11. The quinoline U-78036 is a potent inhibitor of HIV-1 reverse transcriptase. Althaus, I.W., Gonzales, A.J., Chou, J.J., Romero, D.L., Deibel, M.R., Chou, K.C., Kezdy, F.J., Resnick, L., Busso, M.E., So, A.G. J. Biol. Chem. (1993) [Pubmed]
  12. Mefloquine, an antimalaria drug with antiprion activity in vitro, lacks activity in vivo. Kocisko, D.A., Caughey, B. J. Virol. (2006) [Pubmed]
  13. Xenobiotic reductase A in the degradation of quinoline by Pseudomonas putida 86: physiological function, structure and mechanism of 8-hydroxycoumarin reduction. Griese, J.J., P Jakob, R., Schwarzinger, S., Dobbek, H. J. Mol. Biol. (2006) [Pubmed]
  14. Quinoline derivatives are therapeutic candidates for transmissible spongiform encephalopathies. Murakami-Kubo, I., Doh-Ura, K., Ishikawa, K., Kawatake, S., Sasaki, K., Kira, J., Ohta, S., Iwaki, T. J. Virol. (2004) [Pubmed]
  15. Specificity of rabbit cytochrome P-450 isozymes involved in the metabolic activation of the food derived mutagen 2-amino-3-methylimidazo[4,5-f] quinoline. McManus, M.E., Burgess, W., Snyderwine, E., Stupans, I. Cancer Res. (1988) [Pubmed]
  16. Localization of CYP1A1 and CYP1A2 messenger RNA in normal human liver and in hepatocellular carcinoma by in situ hybridization. McKinnon, R.A., Hall, P.D., Quattrochi, L.C., Tukey, R.H., McManus, M.E. Hepatology (1991) [Pubmed]
  17. Instability of microsatellites in rat colon tumors induced by heterocyclic amines. Canzian, F., Ushijima, T., Serikawa, T., Wakabayashi, K., Sugimura, T., Nagao, M. Cancer Res. (1994) [Pubmed]
  18. Complete inhibition of anisomycin and UV radiation but not cytokine induced JNK and p38 activation by an aryl-substituted dihydropyrrolopyrazole quinoline and mixed lineage kinase 7 small interfering RNA. Wang, X., Mader, M.M., Toth, J.E., Yu, X., Jin, N., Campbell, R.M., Smallwood, J.K., Christe, M.E., Chatterjee, A., Goodson, T., Vlahos, C.J., Matter, W.F., Bloem, L.J. J. Biol. Chem. (2005) [Pubmed]
  19. A common mechanism for blockade of heme polymerization by antimalarial quinolines. Sullivan, D.J., Matile, H., Ridley, R.G., Goldberg, D.E. J. Biol. Chem. (1998) [Pubmed]
  20. On the molecular mechanism of chloroquine's antimalarial action. Sullivan, D.J., Gluzman, I.Y., Russell, D.G., Goldberg, D.E. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  21. Pharmacokinetics of gyrase inhibitors, Part 1: Basic chemistry and gastrointestinal disposition. Sörgel, F., Kinzig, M. Am. J. Med. (1993) [Pubmed]
  22. 5-Lipoxygenase-activating protein is the target of a quinoline class of leukotriene synthesis inhibitors. Evans, J.F., Lévillé, C., Mancini, J.A., Prasit, P., Thérien, M., Zamboni, R., Gauthier, J.Y., Fortin, R., Charleson, P., MacIntyre, D.E. Mol. Pharmacol. (1991) [Pubmed]
  23. Genotoxicity of fluoroquinolines and methylquinolines. LaVoie, E.J., Defauw, J., Fealy, M., Way, B.M., McQueen, C.A. Carcinogenesis (1991) [Pubmed]
  24. Synthesis and antitumor properties of N-[2-(dimethylamino)ethyl]carboxamide derivatives of fused tetracyclic quinolines and quinoxalines: a new class of putative topoisomerase inhibitors. Deady, L.W., Kaye, A.J., Finlay, G.J., Baguley, B.C., Denny, W.A. J. Med. Chem. (1997) [Pubmed]
  25. Xanthurenic acid 8-O-beta-D-glucoside, a novel tryptophan metabolite in eye-color mutants of Drosophila melanogaster. Ferré, J., Real, M.D., Ménsua, J.L., Jacobson, K.B. J. Biol. Chem. (1985) [Pubmed]
  26. Intracellular pH of stimulated thymocytes measured with a new fluorescent indicator. Rogers, J., Hesketh, T.R., Smith, G.A., Metcalfe, J.C. J. Biol. Chem. (1983) [Pubmed]
  27. Defining the role of PfCRT in Plasmodium falciparum chloroquine resistance. Bray, P.G., Martin, R.E., Tilley, L., Ward, S.A., Kirk, K., Fidock, D.A. Mol. Microbiol. (2005) [Pubmed]
  28. Origins of enantioselectivity in reductions of ketones on cinchona alkaloid modified platinum. Vayner, G., Houk, K.N., Sun, Y.K. J. Am. Chem. Soc. (2004) [Pubmed]
  29. Discovery of novel targets of quinoline drugs in the human purine binding proteome. Graves, P.R., Kwiek, J.J., Fadden, P., Ray, R., Hardeman, K., Coley, A.M., Foley, M., Haystead, T.A. Mol. Pharmacol. (2002) [Pubmed]
  30. Reversal of MRP-mediated doxorubicin resistance with quinoline-based drugs. Vezmar, M., Georges, E. Biochem. Pharmacol. (2000) [Pubmed]
  31. Novel target genes of the yeast regulator Pdr1p: a contribution of the TPO1 gene in resistance to quinidine and other drugs. do Valle Matta, M.A., Jonniaux, J.L., Balzi, E., Goffeau, A., van den Hazel, B. Gene (2001) [Pubmed]
  32. Differentiation-inducing quinolines as experimental breast cancer agents in the MCF-7 human breast cancer cell model. Martirosyan, A.R., Rahim-Bata, R., Freeman, A.B., Clarke, C.D., Howard, R.L., Strobl, J.S. Biochem. Pharmacol. (2004) [Pubmed]
  33. A novel quinoline derivative, MS-209, overcomes drug resistance of human lung cancer cells expressing the multidrug resistance-associated protein (MRP) gene. Narasaki, F., Oka, M., Fukuda, M., Nakano, R., Ikeda, K., Takatani, H., Terashi, K., Soda, H., Yano, O., Nakamura, T., Doyle, L.A., Tsuruo, T., Kohno, S. Cancer Chemother. Pharmacol. (1997) [Pubmed]
  34. A new quinoline derivative MS-209 reverses multidrug resistance and inhibits multiorgan metastases by P-glycoprotein-expressing human small cell lung cancer cells. Nokihara, H., Yano, S., Nishioka, Y., Hanibuchi, M., Higasida, T., Tsuruo, T., Sone, S. Jpn. J. Cancer Res. (2001) [Pubmed]
  35. Prevention of lethal acute graft-versus-host disease in mice by oral administration of T helper 1 inhibitor, TAK-603. Lu, Y., Sakamaki, S., Kuroda, H., Kusakabe, T., Konuma, Y., Akiyama, T., Fujimi, A., Takemoto, N., Nishiie, K., Matsunaga, T., Hirayama, Y., Kato, J., Kon, S., Kogawa, K., Niitsu, Y. Blood (2001) [Pubmed]
  36. MS-209, a quinoline-type reversal agent, potentiates antitumor efficacy of docetaxel in multidrug-resistant solid tumor xenograft models. Naito, M., Matsuba, Y., Sato, S., Hirata, H., Tsuruo, T. Clin. Cancer Res. (2002) [Pubmed]
  37. On the metabolism of quinoline and isoquinoline: possible molecular basis for differences in biological activities. La Voie, E.J., Adams, E.A., Shigematsu, A., Hoffmann, D. Carcinogenesis (1983) [Pubmed]
  38. Studies on disease-modifying antirheumatic drugs: synthesis of novel quinoline and quinazoline derivatives and their anti-inflammatory effect. Baba, A., Kawamura, N., Makino, H., Ohta, Y., Taketomi, S., Sohda, T. J. Med. Chem. (1996) [Pubmed]
  39. The structural basis of camptothecin interactions with human serum albumin: impact on drug stability. Burke, T.G., Mi, Z. J. Med. Chem. (1994) [Pubmed]
 
WikiGenes - Universities