The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

glycine     2-aminoethanoic acid

Synonyms: Glycinum, Aciport, Amitone, Corilin, Glicina, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of aminoacetic acid

  • These enzymes are formate dehydrogenases of Escherichia coli and several anaerobic bacteria, clostridial glycine reductase, mammalian and avian glutathione peroxidase, and nicotinic acid hydroxylase of Clostridium barkeri [1].
  • Glycine content was two to four times above normal in several brain regions, and brain glycine cleavage enzyme activity was absent in two patients dying of nonketotic hyperglycinemia [2].
  • We report here that the infection of soybean (Glycine max L.) roots with Rhizobium japonicum results in the synthesis by the plant of at least 18-20 polypeptides other than leghemoglobin during the development of root nodules [3].
  • Congenital myoclonus is a widespread neurologic disorder characterized by hyperexcitability, muscular spasticity and myoclonus associated with marked reduction in neural glycine binding sites [4].
  • This process mimics HIV immature particle formation and is dependent on myristoylation of the N-terminal glycine, as deletion of the latter results in particle accumulation in the cytoplasm and, interestingly, in the nucleus, pointing to a potential role of this non-fatty-acid-acylated species in the viral life cycle [5].
 

Psychiatry related information on aminoacetic acid

  • Glycine 699 is pivotal for the motor activity of skeletal muscle myosin [6].
  • This exceptional outcome may be related to the high residual activity of the mutant protein (32% of wild type) and therapeutic intervention during a critical period of heightened brain exposure and sensitivity to glycine [7].
  • Seven at risk members of a familial Alzheimer's disease pedigree associated with the amyloid precursor protein 717 valine to glycine mutation underwent serial MR scanning and neuropsychological assessments over 3 years [8].
  • The model peptide, (Pro-Pro-Gly)10, was also degraded by Cu(II)/H2O2, and a new N-terminal glycine was generated in proportion to the reaction time [9].
  • Preliminary findings indicate that the high glycine levels were present in patients who were depressed, manic, or in remission and were unaffected by electroshock therapy [10].
 

High impact information on aminoacetic acid

 

Chemical compound and disease context of aminoacetic acid

 

Biological context of aminoacetic acid

 

Anatomical context of aminoacetic acid

  • Mutagenesis of glycine 2 of p60src, the transforming protein of Rous sarcoma virus (RSV), yields a protein that is neither myristylated nor bound to cellular membranes [24].
  • Glycine concentrations were measured in plasma and cerebrospinal fluid of five patients in different types of hyperglycinemia to determine why severe neurologic deterioration is confined to the so-called nonketotic form of hyperglycinemia [2].
  • Glycine is an important inhibitory transmitter in the brainstem and spinal cord [25].
  • D-serine synthesis and release by astrocytes as an endogenous ligand for the "glycine" site of N-methyl D-aspartate (NMDA) receptors defy the concept that a neurotransmitter must be synthesized by neurons [26].
  • We recently performed a similar search in porcine pancreas and found a high concentration of a peptide having a glycine amide at its C-terminus [27].
 

Associations of aminoacetic acid with other chemical compounds

 

Gene context of aminoacetic acid

  • Here we describe a Glra1 missense mutation in spd that results in reduced agonist sensitivity in glycine receptors expressed in vitro [39].
  • These results provide evidence that Glrb is necessary for postsynaptic expression of glycine receptor complexes, and suggest Glrb as a candidate gene for inherited myoclonus in other species [4].
  • Using a positional candidate-gene approach, we determined the ttw phenotype is caused by a nonsense mutation (glycine 568 to stop) in the Npps gene which encodes nucleotide pyrophosphatase [40].
  • Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits [41].
  • In contrast, these NR1/NR3A or -3B 'NMDARs' constitute a type of excitatory glycine receptor [41].
  • These findings demonstrate that integrity of the glycine co-agonist binding site is a functional checkpoint requisite for efficient cell surface trafficking of assembled NMDA receptors [42].
 

Analytical, diagnostic and therapeutic context of aminoacetic acid

  • Ultrastructural studies have shown that the peripheral membrane protein gephyrin, which co-purifies with the postsynaptic inhibitory glycine receptor (GlyR) upon affinity chromatography, is situated on the cytoplasmic face of glycinergic postsynaptic membranes [43].
  • Moreover, local application of glycine and its antagonist strychnine by iontophoresis (through glass pipette electrodes, by means of an electric current) revealed that precisely timed glycine-controlled inhibition is a critical part of the mechanism by which the physiologically relevant range of ITDs is encoded in the MSO [44].
  • However, when the active-site residue arginine-106 of the Escherichia coli enzyme is replaced with a glycine through site-directed mutagenesis, the resultant mutant enzyme manifests substrate cooperativity that is absent in the wild-type enzyme [45].
  • Trace amounts of glycine, serine, and alanine were detected in the carbonate component of the martian meteorite ALH84001 by high-performance liquid chromatography [46].
  • Sequence analysis of atriopeptin I indicates that it is composed of 21 amino acids, of which serine and glycine residues predominate [47].

References

  1. Selenium-dependent enzymes. Stadtman, T.C. Annu. Rev. Biochem. (1980) [Pubmed]
  2. Nonketotic hyperglycinemia. Glycine accumulation due to absence of glycerine cleavage in brain. Perry, T.L., Urquhart, N., MacLean, J., Evans, M.E., Hansen, S., Davidson, G.F., Applegarth, D.A., MacLeod, P.J., Lock, J.E. N. Engl. J. Med. (1975) [Pubmed]
  3. Identification of "nodule-specific" host proteins (nodoulins) involved in the development of rhizobium-legume symbiosis. Legocki, R.P., Verma, D.P. Cell (1980) [Pubmed]
  4. Glycine receptor beta-subunit gene mutation in spastic mouse associated with LINE-1 element insertion. Kingsmore, S.F., Giros, B., Suh, D., Bieniarz, M., Caron, M.G., Seldin, M.F. Nat. Genet. (1994) [Pubmed]
  5. Assembly and release of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Gheysen, D., Jacobs, E., de Foresta, F., Thiriart, C., Francotte, M., Thines, D., De Wilde, M. Cell (1989) [Pubmed]
  6. Glycine 699 is pivotal for the motor activity of skeletal muscle myosin. Kinose, F., Wang, S.X., Kidambi, U.S., Moncman, C.L., Winkelmann, D.A. J. Cell Biol. (1996) [Pubmed]
  7. Persistent NKH with transient or absent symptoms and a homozygous GLDC mutation. Korman, S.H., Boneh, A., Ichinohe, A., Kojima, K., Sato, K., Ergaz, Z., Gomori, J.M., Gutman, A., Kure, S. Ann. Neurol. (2004) [Pubmed]
  8. Presymptomatic hippocampal atrophy in Alzheimer's disease. A longitudinal MRI study. Fox, N.C., Warrington, E.K., Freeborough, P.A., Hartikainen, P., Kennedy, A.M., Stevens, J.M., Rossor, M.N. Brain (1996) [Pubmed]
  9. Oxidative fragmentation of collagen and prolyl peptide by Cu(II)/H2O2. Conversion of proline residue to 2-pyrrolidone. Kato, Y., Uchida, K., Kawakishi, S. J. Biol. Chem. (1992) [Pubmed]
  10. Amino acids in bipolar affective disorders: increased glycine levels in erythrocytes. Rosenblatt, S., Gaull, G.E., Chanley, J.D., Rosenthal, J.S., Smith, H., Sarkozi, L. The American journal of psychiatry. (1979) [Pubmed]
  11. Molecular biology of mammalian amino acid transporters. Malandro, M.S., Kilberg, M.S. Annu. Rev. Biochem. (1996) [Pubmed]
  12. Molecular structure and function of the glycine receptor chloride channel. Lynch, J.W. Physiol. Rev. (2004) [Pubmed]
  13. Mutations in the gene encoding GlyT2 (SLC6A5) define a presynaptic component of human startle disease. Rees, M.I., Harvey, K., Pearce, B.R., Chung, S.K., Duguid, I.C., Thomas, P., Beatty, S., Graham, G.E., Armstrong, L., Shiang, R., Abbott, K.J., Zuberi, S.M., Stephenson, J.B., Owen, M.J., Tijssen, M.A., van den Maagdenberg, A.M., Smart, T.G., Supplisson, S., Harvey, R.J. Nat. Genet. (2006) [Pubmed]
  14. Keratin 8 mutations in patients with cryptogenic liver disease. Ku, N.O., Gish, R., Wright, T.L., Omary, M.B. N. Engl. J. Med. (2001) [Pubmed]
  15. Abnormal biliary lipid composition in cystic fibrosis. Effect of pancreatic enzymes. Roy, C.C., Weber, A.M., Morin, C.L., Combes, J.C., Nusslé, D., Mégevand, A., Lasalle, R. N. Engl. J. Med. (1977) [Pubmed]
  16. Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. Rousseau, F., Bonaventure, J., Legeai-Mallet, L., Pelet, A., Rozet, J.M., Maroteaux, P., Le Merrer, M., Munnich, A. Nature (1994) [Pubmed]
  17. Clustered mutations in HIV-1 gag are consistently required for escape from HLA-B27-restricted cytotoxic T lymphocyte responses. Kelleher, A.D., Long, C., Holmes, E.C., Allen, R.L., Wilson, J., Conlon, C., Workman, C., Shaunak, S., Olson, K., Goulder, P., Brander, C., Ogg, G., Sullivan, J.S., Dyer, W., Jones, I., McMichael, A.J., Rowland-Jones, S., Phillips, R.E. J. Exp. Med. (2001) [Pubmed]
  18. Epstein-Barr virus-induced autoimmune responses. II. Immunoglobulin G autoantibodies to mimicking and nonmimicking epitopes. Presence in autoimmune disease. Vaughan, J.H., Nguyen, M.D., Valbracht, J.R., Patrick, K., Rhodes, G.H. J. Clin. Invest. (1995) [Pubmed]
  19. Distinct and overlapping functions of allelic forms of human mannose binding protein. Super, M., Gillies, S.D., Foley, S., Sastry, K., Schweinle, J.E., Silverman, V.J., Ezekowitz, R.A. Nat. Genet. (1992) [Pubmed]
  20. Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. He, S.Y., Huang, H.C., Collmer, A. Cell (1993) [Pubmed]
  21. Mutations in the alpha 1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Shiang, R., Ryan, S.G., Zhu, Y.Z., Hahn, A.F., O'Connell, P., Wasmuth, J.J. Nat. Genet. (1993) [Pubmed]
  22. Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Bulman, M.P., Kusumi, K., Frayling, T.M., McKeown, C., Garrett, C., Lander, E.S., Krumlauf, R., Hattersley, A.T., Ellard, S., Turnpenny, P.D. Nat. Genet. (2000) [Pubmed]
  23. Secretion of a lambda 2 immunoglobulin chain is prevented by a single amino acid substitution in its variable region. Wu, G.E., Hozumi, N., Murialdo, H. Cell (1983) [Pubmed]
  24. Rous sarcoma virus transforming protein lacking myristic acid phosphorylates known polypeptide substrates without inducing transformation. Kamps, M.P., Buss, J.E., Sefton, B.M. Cell (1986) [Pubmed]
  25. Modulation of glycine receptor chloride channels by cAMP-dependent protein kinase in spinal trigeminal neurons. Song, Y.M., Huang, L.Y. Nature (1990) [Pubmed]
  26. Novel neural modulators. Boehning, D., Snyder, S.H. Annu. Rev. Neurosci. (2003) [Pubmed]
  27. Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Tatemoto, K., Efendić, S., Mutt, V., Makk, G., Feistner, G.J., Barchas, J.D. Nature (1986) [Pubmed]
  28. A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Higgins, C.F., Dorman, C.J., Stirling, D.A., Waddell, L., Booth, I.R., May, G., Bremer, E. Cell (1988) [Pubmed]
  29. Mutations in the human connexin gene GJB3 cause erythrokeratodermia variabilis. Richard, G., Smith, L.E., Bailey, R.A., Itin, P., Hohl, D., Epstein, E.H., DiGiovanna, J.J., Compton, J.G., Bale, S.J. Nat. Genet. (1998) [Pubmed]
  30. Activation of multiple-conductance state chloride channels in spinal neurones by glycine and GABA. Hamill, O.P., Bormann, J., Sakmann, B. Nature (1983) [Pubmed]
  31. Hippocampus-dependent learning facilitated by a monoclonal antibody or D-cycloserine. Thompson, L.T., Moskal, J.R., Disterhoft, J.F. Nature (1992) [Pubmed]
  32. Molecular basis for substrate discrimination by glycine transporters. Vandenberg, R.J., Shaddick, K., Ju, P. J. Biol. Chem. (2007) [Pubmed]
  33. Relationship between self-association of glycine molecules in supersaturated solutions and solid state outcome. Erdemir, D., Chattopadhyay, S., Guo, L., Ilavsky, J., Amenitsch, H., Segre, C.U., Myerson, A.S. Phys. Rev. Lett. (2007) [Pubmed]
  34. Conformational variability of the glycine receptor M2 domain in response to activation by different agonists. Pless, S.A., Dibas, M.I., Lester, H.A., Lynch, J.W. J. Biol. Chem. (2007) [Pubmed]
  35. Roles for loop 2 residues of alpha1 glycine receptors in agonist activation. Crawford, D.K., Perkins, D.I., Trudell, J.R., Bertaccini, E.J., Davies, D.L., Alkana, R.L. J. Biol. Chem. (2008) [Pubmed]
  36. The role of the mitochondrial glycine cleavage complex in the metabolism and virulence of the protozoan parasite Leishmania major. Scott, D.A., Hickerson, S.M., Vickers, T.J., Beverley, S.M. J. Biol. Chem. (2008) [Pubmed]
  37. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain. Pless, S.A., Lynch, J.W. J. Biol. Chem. (2009) [Pubmed]
  38. Serine and glycine metabolism in cancer. Amelio, I., Cutruzzolá, F., Antonov, A., Agostini, M., Melino, G. Trends Biochem. Sci. (2014) [Pubmed]
  39. A missense mutation in the gene encoding the alpha 1 subunit of the inhibitory glycine receptor in the spasmodic mouse. Ryan, S.G., Buckwalter, M.S., Lynch, J.W., Handford, C.A., Segura, L., Shiang, R., Wasmuth, J.J., Camper, S.A., Schofield, P., O'Connell, P. Nat. Genet. (1994) [Pubmed]
  40. Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Okawa, A., Nakamura, I., Goto, S., Moriya, H., Nakamura, Y., Ikegawa, S. Nat. Genet. (1998) [Pubmed]
  41. Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Chatterton, J.E., Awobuluyi, M., Premkumar, L.S., Takahashi, H., Talantova, M., Shin, Y., Cui, J., Tu, S., Sevarino, K.A., Nakanishi, N., Tong, G., Lipton, S.A., Zhang, D. Nature (2002) [Pubmed]
  42. The integrity of the glycine co-agonist binding site of N-methyl-D-aspartate receptors is a functional quality control checkpoint for cell surface delivery. Kenny, A.V., Cousins, S.L., Pinho, L., Stephenson, F.A. J. Biol. Chem. (2009) [Pubmed]
  43. Gephyrin antisense oligonucleotides prevent glycine receptor clustering in spinal neurons. Kirsch, J., Wolters, I., Triller, A., Betz, H. Nature (1993) [Pubmed]
  44. Precise inhibition is essential for microsecond interaural time difference coding. Brand, A., Behrend, O., Marquardt, T., McAlpine, D., Grothe, B. Nature (2002) [Pubmed]
  45. Triggering of allostery in an enzyme by a point mutation: ornithine transcarbamoylase. Kuo, L.C., Zambidis, I., Caron, C. Science (1989) [Pubmed]
  46. A search for endogenous amino acids in martian meteorite ALH84001. Bada, J.L., Glavin, D.P., McDonald, G.D., Becker, L. Science (1998) [Pubmed]
  47. Purification and sequence analysis of bioactive atrial peptides (atriopeptins). Currie, M.G., Geller, D.M., Cole, B.R., Siegel, N.R., Fok, K.F., Adams, S.P., Eubanks, S.R., Galluppi, G.R., Needleman, P. Science (1984) [Pubmed]
 
WikiGenes - Universities