The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Magnesane     magnesium(+2) cation

Synonyms: Magnesium 2+, magnesium ion, MAGNESIUM(II), magnesium(2+), Magnesium ions, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of MAGNESIUM

  • We establish that expression of the Mg(2+) transporter MgtA of Salmonella enterica serovar Typhimurium is controlled by its 5' untranslated region (5'UTR) [1].
  • We report a crystal structure of bacteriophage T7 primase that reveals its two domains and the presence of two Mg(2+) ions bound to the active site [2].
  • The mechanosensitive cation channel (MscCa) transduces membrane stretch into cation (Na(+), K(+), Ca(2+) and Mg(2+)) flux across the cell membrane, and is implicated in cell-volume regulation, cell locomotion, muscle dystrophy and cardiac arrhythmias [3].
  • Mg(2+) ions produce a slight expansion of the capsid around the 5-fold axes [4].
  • We describe the CorA Mg(2+) transporter homologue from Thermotoga maritima in complex with 12 divalent cations at 3.7 A resolution [5].

Psychiatry related information on MAGNESIUM

  • Finally, mutations of residues in the second transmembrane segment, unlike those in the third transmembrane segment, revealed cooperative behavior for the influx of Mg(2+) [6].
  • Changes in the level of free Mg(2+) ions within the physiological range are shown to modulate motor activity by inhibiting ADP release [7].
  • Initial selective pressure was permissive, with a 30 min reaction time and 25 mM Mg(2+) [8].
  • The inability of liver cells, and possibly other tissues, to accumulate Mg(2+) can help explain the reduction in tissue Mg(2+) content following chronic alcohol consumption [9].
  • Mg(2+) led to a significant increase in slow wave sleep (16.5 +/- 20.4 min vs. 10.1 +/- 15.4 min, < or =0.05), delta power (47128.7 microV(2) +21417.7 microV(2) vs. 37862.1 microV(2) +/- 23241.7 microV(2), p < or =0.05) and sigma power (1923.0 microV(2) + 1111.3 microV(2) vs. 1541.0 microV(2) + 1134.5 microV(2), p< or =0.05 ) [10].

High impact information on MAGNESIUM

  • With the use of microfluorescent studies with an established mouse distal convoluted tubule (MDCT) cell line, it was shown that Mg(2+) uptake was concentration and voltage dependent [11].
  • The high-affinity receptor state requires both Mg(2+) and cholesterol, which probably function as allosteric modulators [12].
  • The distal tubule reabsorbs approximately 10% of the filtered Mg(2+), but this is 70-80% of that delivered from the loop of Henle [11].
  • Thus core RNAP is able to negatively modulate the sigma-initiated melting of the transcription start site and, by sensing the changes in temperature and Mg(2+) concentration, to regulate the efficiency of promoter -10 melting [13].
  • Overall, our results indicate that TRPM7 has a central role in Mg(2+) homeostasis as a Mg(2+) uptake pathway regulated through a functional coupling between its channel and kinase domains [14].

Chemical compound and disease context of MAGNESIUM

  • Block of the channel of N-methyl-D-aspartate (NMDA) receptors by external Mg(2+) (Mg(o)(2+)) has broad implications for the many physiological and pathological processes that depend on NMDA receptor activation [15].
  • The PmrAPmrB two-component system of Salmonella enterica can be activated independently by Fe(3+), which is sensed by the PmrB protein, and in low Mg(2+), which is sensed by the PhoQ protein [16].
  • Crystals of Escherichia coli EI were obtained by mixing the protein with Mg(2+) and PEP, followed by oxalate, an EI inhibitor [17].
  • The primase fragment of bacteriophage T7 gene 4 protein catalyzes the synthesis of oligoribonucleotides in the presence of ATP, CTP, Mg(2+) (or Mn(2+)), and DNA containing a primase recognition site [18].
  • Here, we describe the effects of Zn(2+) on complex I to define whether complex I may contribute to mediating the pathological effects of zinc in states such as ischemia and to determine how Zn(2+) can be used to probe the mechanism of complex I. Zn(2+) inhibits complex I more strongly than Mg(2+), Ca(2+), Ba(2+), and Mn(2+) to Cu(2+) or Cd(2+) [19].

Biological context of MAGNESIUM

  • This trans-splicing reaction has ATP, Mg(2+), and splice-site sequence requirements similar to those of cis-splicing reactions [20].
  • Here we show that mutant alleles of the MRS2 gene as well as overexpression of this gene both increase intramitochondrial Mg(2+) concentrations and compensate for splicing defects of group II introns in mit(-) mutants M1301 and B-loop [21].
  • One end of the nucleotide exchange factor is buried between the switch 1 and 2 regions of eEF1A and destroys the binding site for the Mg(2+) ion associated with the nucleotide [22].
  • The weakly bound Mg(2+) is stabilized in the active center in different modes depending on the type of reaction: during synthesis by the beta,gamma-phosphates of the incoming substrate; and during hydrolysis by the phosphates of a non-base-paired nucleoside triphosphate [23].
  • Mutagenesis, proteolytic cleavage, and transition metal-catalyzed oxidative cleavages are providing much evidence about residues involved in binding of Na(+), K(+), ATP, and Mg(2+) ions and changes accompanying E1-E2 or E1-P-E2-P conformational transitions [24].

Anatomical context of MAGNESIUM

  • This critical role of Mg(2+) concentrations for splicing is further documented by our observation that pre-mRNAs, accumulated in mitochondria isolated from mutants, efficiently undergo splicing in organello when these mitochondria are incubated in the presence of 10 mM external Mg(2+) (mit(-) M1301) and an ionophore (mrs2Delta) [21].
  • It has been shown to be an integral protein of the inner mitochondrial membrane, structurally and functionally related to the bacterial CorA Mg(2+) transporter [21].
  • While its structural and functional similarity to the bacterial Mg(2+) transport protein CorA suggested a role for Mrs2p in Mg(2+) influx into the organelle, other functions in cation homeostasis could not be excluded [25].
  • Using selection-amplification we previously found RNAs that bind stably and increase the ionic conductance of phospholipid membranes at high Mg(2+) and Ca(2+) concentrations [26].
  • By lowering the Mg(2+) concentration in solutions containing ribosomes the particles were found to dissociate into 30S and 50S subunits [27].

Associations of MAGNESIUM with other chemical compounds

  • Both Mn(2+) and Mg(2+) alone activate Ty1 RT cooperatively with Hill coefficients of 2, providing kinetic evidence for a dual divalent cation requirement at the RT active site [28].
  • Ectopic overexpression of AtMHX in transgenic tobacco plants render them sensitive to growth on media containing elevated levels of Mg(2+) or Zn(2+), but does not affect the total amounts of these minerals in shoots of the transgenic plants [29].
  • In gel filtration experiments, McrB(L) and McrB(S) form high molecular weight oligomers in the presence of Mg(2+) and GTP, GDP or GTP-gamma-S [30].
  • Unlike most serine/threonine kinases, the AtCBL-interacting kinase efficiently uses Mn(2)+ to Mg(2)+ as a cofactor and may function as a Mn(2)+ binding protein in the cell [31].
  • The pattern of top1mt expression matches the requirement for high mitochondrial activity in specific tissues. top1mt is a type IB topoisomerase that requires divalent metal (Ca(2+) or Mg(2+)) and alkaline pH for optimum activity [32].

Gene context of MAGNESIUM

  • Platelet adhesion to decorin was time dependent, required the presence of Mg(2+) ions, and was totally mediated by the protein core of the proteoglycan [33].
  • The binding required the presence of Mg(2+), implying that the sequence is a pause site for Ku70/80 translocation from a free end [34].
  • These Toprim domain residues have been implicated in binding a metal ion cofactor in topoisomerases and bacterial primases, supporting the idea that DNA cleavage by Spo11p is Mg(2+) dependent [35].
  • Our data are consistent with the known switch from NR2B to NR2A subunits during the first two postnatal weeks, but suggest a gradual incorporation of the NR2C subunit that modifies Mg(2+) sensitivity and only later influences EPSC kinetics [36].
  • Single-channel studies revealed that the ryanodine-modified wt RyR2 channel was sensitive to inhibition by Mg(2+) and to activation by caffeine and ATP [37].

Analytical, diagnostic and therapeutic context of MAGNESIUM


  1. An RNA sensor for intracellular mg(2+). Cromie, M.J., Shi, Y., Latifi, T., Groisman, E.A. Cell (2006) [Pubmed]
  2. Modular architecture of the bacteriophage T7 primase couples RNA primer synthesis to DNA synthesis. Kato, M., Ito, T., Wagner, G., Richardson, C.C., Ellenberger, T. Mol. Cell (2003) [Pubmed]
  3. TRPC1 forms the stretch-activated cation channel in vertebrate cells. Maroto, R., Raso, A., Wood, T.G., Kurosky, A., Martinac, B., Hamill, O.P. Nat. Cell Biol. (2005) [Pubmed]
  4. Translocation portals for the substrates and products of a viral transcription complex: the bluetongue virus core. Diprose, J.M., Burroughs, J.N., Sutton, G.C., Goldsmith, A., Gouet, P., Malby, R., Overton, I., Ziéntara, S., Mertens, P.P., Stuart, D.I., Grimes, J.M. EMBO J. (2001) [Pubmed]
  5. A structural basis for Mg2+ homeostasis and the CorA translocation cycle. Payandeh, J., Pai, E.F. EMBO J. (2006) [Pubmed]
  6. The CorA Mg(2+) transport protein of Salmonella typhimurium. Mutagenesis of conserved residues in the second membrane domain. Szegedy, M.A., Maguire, M.E. J. Biol. Chem. (1999) [Pubmed]
  7. Changes in Mg2+ ion concentration and heavy chain phosphorylation regulate the motor activity of a class I myosin. Fujita-Becker, S., Dürrwang, U., Erent, M., Clark, R.J., Geeves, M.A., Manstein, D.J. J. Biol. Chem. (2005) [Pubmed]
  8. In vitro selection of a novel nuclease-resistant RNA phosphodiesterase. Beaudry, A., DeFoe, J., Zinnen, S., Burgin, A., Beigelman, L. Chem. Biol. (2000) [Pubmed]
  9. Chronic EtOH administration alters liver Mg2+ homeostasis. Young, A., Cefaratti, C., Romani, A. Am. J. Physiol. Gastrointest. Liver Physiol. (2003) [Pubmed]
  10. Oral Mg(2+) supplementation reverses age-related neuroendocrine and sleep EEG changes in humans. Held, K., Antonijevic, I.A., Künzel, H., Uhr, M., Wetter, T.C., Golly, I.C., Steiger, A., Murck, H. Pharmacopsychiatry (2002) [Pubmed]
  11. Magnesium transport in the renal distal convoluted tubule. Dai, L.J., Ritchie, G., Kerstan, D., Kang, H.S., Cole, D.E., Quamme, G.A. Physiol. Rev. (2001) [Pubmed]
  12. The oxytocin receptor system: structure, function, and regulation. Gimpl, G., Fahrenholz, F. Physiol. Rev. (2001) [Pubmed]
  13. Role of the sigma factor in transcription initiation in the absence of core RNA polymerase. Hsu, H.H., Chung, K.M., Chen, T.C., Chang, B.Y. Cell (2006) [Pubmed]
  14. Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Schmitz, C., Perraud, A.L., Johnson, C.O., Inabe, K., Smith, M.K., Penner, R., Kurosaki, T., Fleig, A., Scharenberg, A.M. Cell (2003) [Pubmed]
  15. Permeant ion regulation of N-methyl-D-aspartate receptor channel block by Mg(2+). Antonov, S.M., Johnson, J.W. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  16. Closing the loop: the PmrA/PmrB two-component system negatively controls expression of its posttranscriptional activator PmrD. Kato, A., Latifi, T., Groisman, E.A. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  17. Structure of phosphorylated enzyme I, the phosphoenolpyruvate:sugar phosphotransferase system sugar translocation signal protein. Teplyakov, A., Lim, K., Zhu, P.P., Kapadia, G., Chen, C.C., Schwartz, J., Howard, A., Reddy, P.T., Peterkofsky, A., Herzberg, O. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  18. Interaction of ribonucleoside triphosphates with the gene 4 primase of bacteriophage T7. Frick, D.N., Kumar, S., Richardson, C.C. J. Biol. Chem. (1999) [Pubmed]
  19. The Inhibition of Mitochondrial Complex I (NADH:Ubiquinone Oxidoreductase) by Zn2+. Sharpley, M.S., Hirst, J. J. Biol. Chem. (2006) [Pubmed]
  20. Characterization of U4 and U6 interactions with the 5' splice site using a S. cerevisiae in vitro trans-splicing system. Johnson, T.L., Abelson, J. Genes Dev. (2001) [Pubmed]
  21. Mitochondrial Mg(2+) homeostasis is critical for group II intron splicing in vivo. Gregan, J., Kolisek, M., Schweyen, R.J. Genes Dev. (2001) [Pubmed]
  22. Structural basis for nucleotide exchange and competition with tRNA in the yeast elongation factor complex eEF1A:eEF1Balpha. Andersen, G.R., Pedersen, L., Valente, L., Chatterjee, I., Kinzy, T.G., Kjeldgaard, M., Nyborg, J. Mol. Cell (2000) [Pubmed]
  23. Unified two-metal mechanism of RNA synthesis and degradation by RNA polymerase. Sosunov, V., Sosunova, E., Mustaev, A., Bass, I., Nikiforov, V., Goldfarb, A. EMBO J. (2003) [Pubmed]
  24. Structure and mechanism of Na,K-ATPase: functional sites and their interactions. Jorgensen, P.L., Hakansson, K.O., Karlish, S.J. Annu. Rev. Physiol. (2003) [Pubmed]
  25. Mrs2p is an essential component of the major electrophoretic Mg2+ influx system in mitochondria. Kolisek, M., Zsurka, G., Samaj, J., Weghuber, J., Schweyen, R.J., Schweigel, M. EMBO J. (2003) [Pubmed]
  26. Binding and disruption of phospholipid bilayers by supramolecular RNA complexes. Vlassov, A., Khvorova, A., Yarus, M. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  27. Detection and selective dissociation of intact ribosomes in a mass spectrometer. Rostom, A.A., Fucini, P., Benjamin, D.R., Juenemann, R., Nierhaus, K.H., Hartl, F.U., Dobson, C.M., Robinson, C.V. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  28. Inhibition of reverse transcription in vivo by elevated manganese ion concentration. Bolton, E.C., Mildvan, A.S., Boeke, J.D. Mol. Cell (2002) [Pubmed]
  29. Cloning and characterization of a novel Mg(2+)/H(+) exchanger. Shaul, O., Hilgemann, D.W., de-Almeida-Engler, J., Van Montagu, M., Inz, D., Galili, G. EMBO J. (1999) [Pubmed]
  30. The McrBC restriction endonuclease assembles into a ring structure in the presence of G nucleotides. Panne, D., Müller, S.A., Wirtz, S., Engel, A., Bickle, T.A. EMBO J. (2001) [Pubmed]
  31. Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis. Shi, J., Kim, K.N., Ritz, O., Albrecht, V., Gupta, R., Harter, K., Luan, S., Kudla, J. Plant Cell (1999) [Pubmed]
  32. Human mitochondrial topoisomerase I. Zhang, H., Barceló, J.M., Lee, B., Kohlhagen, G., Zimonjic, D.B., Popescu, N.C., Pommier, Y. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  33. The small proteoglycan decorin supports adhesion and activation of human platelets. Guidetti, G., Bertoni, A., Viola, M., Tira, E., Balduini, C., Torti, M. Blood (2002) [Pubmed]
  34. Functional characterization of a novel Ku70/80 pause site at the H19/Igf2 imprinting control region. Katz, D.J., Beer, M.A., Levorse, J.M., Tilghman, S.M. Mol. Cell. Biol. (2005) [Pubmed]
  35. Identification of residues in yeast Spo11p critical for meiotic DNA double-strand break formation. Diaz, R.L., Alcid, A.D., Berger, J.M., Keeney, S. Mol. Cell. Biol. (2002) [Pubmed]
  36. Developmental profile of the changing properties of NMDA receptors at cerebellar mossy fiber-granule cell synapses. Cathala, L., Misra, C., Cull-Candy, S. J. Neurosci. (2000) [Pubmed]
  37. Ryanodine sensitizes the Ca(2+) release channel (ryanodine receptor) to Ca(2+) activation. Masumiya, H., Li, P., Zhang, L., Chen, S.R. J. Biol. Chem. (2001) [Pubmed]
  38. The complex ATP-Fe(2+) serves as a specific affinity cleavage reagent in ATP-Mg(2+) sites of Na,K-ATPase: altered ligation of Fe(2+) (Mg(2+)) ions accompanies the E(1)-->E(2) conformational change. Patchornik, G., Goldshleger, R., Karlish, S.J. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  39. Sequence-related protein export NTPases encoded by the conjugative transfer region of RP4 and by the cag pathogenicity island of Helicobacter pylori share similar hexameric ring structures. Krause, S., Barcena, M., Pansegrau, W., Lurz, R., Carazo, J.M., Lanka, E. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  40. Binding Affinity of Metal Ions to the CD11b A-domain Is Regulated by Integrin Activation and Ligands. Ajroud, K., Sugimori, T., Goldmann, W.H., Fathallah, D.M., Xiong, J.P., Arnaout, M.A. J. Biol. Chem. (2004) [Pubmed]
  41. Identification of critical residues of choline kinase A2 from Caenorhabditis elegans. Yuan, C., Kent, C. J. Biol. Chem. (2004) [Pubmed]
  42. Mg2+ and Ca2+ differentially regulate DNA binding and dimerization of DREAM. Osawa, M., Dace, A., Tong, K.I., Valiveti, A., Ikura, M., Ames, J.B. J. Biol. Chem. (2005) [Pubmed]
WikiGenes - Universities