The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

TSPAN1  -  tetraspanin 1

Homo sapiens

Synonyms: NET-1, NET1, TM4C, TM4SF, TSPAN-1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of TSPAN1

 

Psychiatry related information on TSPAN1

 

High impact information on TSPAN1

  • Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain [6].
  • Interactions of alpha3beta1 integrin with tetraspanin proteins may provide clues to how it transduces signals that affect cell behavior [7].
  • Cell-surface proteins of the tetraspanin family are small, and often hidden by a canopy of tall glycoprotein neighbours in the cell membrane [8].
  • These results show how laterally associated EWI-2 might regulate alpha3beta1 function in disease and development, and demonstrate how tetraspanin proteins can assemble multiple nontetraspanin proteins into functional complexes [9].
  • CD151, a member of the tetraspanin family proteins, tightly associates with integrin alpha3beta1 and localizes at basolateral surfaces of epithelial cells [10].
 

Chemical compound and disease context of TSPAN1

 

Biological context of TSPAN1

 

Anatomical context of TSPAN1

 

Associations of TSPAN1 with chemical compounds

  • Tetraspanins are clustered in specific microdomains (named tetraspanin-enriched microdomains, or TERM) in the plasma membrane and regulate the functions of associated transmembrane receptors, including integrins and receptor tyrosine kinases [23].
  • The tetraspanin protein CD9 and the integrins alphaII(b)beta3 and alpha6beta1 specifically coprecipitated with CD36 from platelets that were solubilized in CHAPS and Brij 99 but not from platelets that were solubilized in Triton X-100 [24].
  • Involvement of alpha3 integrin/tetraspanin complexes in the angiogenic response induced by angiotensin II [25].
  • The carboxy-terminal cysteine of the tetraspanin L6 antigen is required for its interaction with SITAC, a novel PDZ protein [26].
  • In the absence of T258A and S259A mutations, alanine substitution of all other potential phosphosites within the hNET did not block PKC-induced phosphorylation and down-regulation [27].
 

Physical interactions of TSPAN1

 

Regulatory relationships of TSPAN1

 

Other interactions of TSPAN1

  • To overcome this problem, we designed a second network, NET2, which learned to determine when NET1 was in a state of generalization [35].
  • In cells attached to the extracellular matrix, the integrin-tetraspanin adhesion complexes are clustered into a distinct type of adhesion structure at the cell periphery [1].
  • The major envelope protein of HCV (HCV-E2) binds, with high affinity CD81, a tetraspanin expressed on several cell types [36].
  • CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin [37].
  • CD53 is a tetraspanin protein mostly expressed in to the lymphoid-myeloid lineage [38].
 

Analytical, diagnostic and therapeutic context of TSPAN1

References

  1. Complexes of tetraspanins with integrins: more than meets the eye. Berditchevski, F. J. Cell. Sci. (2001) [Pubmed]
  2. Identification of a new proliferation-associated protein NET-1/C4.8 characteristic for a subset of high-grade cervical intraepithelial neoplasia and cervical carcinomas. Wollscheid, V., Kühne-Heid, R., Stein, I., Jansen, L., Köllner, S., Schneider, A., Dürst, M. Int. J. Cancer (2002) [Pubmed]
  3. Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1. Nydegger, S., Khurana, S., Krementsov, D.N., Foti, M., Thali, M. J. Cell Biol. (2006) [Pubmed]
  4. Regulatory role of tetraspanin CD9 in tumor-endothelial cell interaction during transendothelial invasion of melanoma cells. Longo, N., Yáñez-Mó, M., Mittelbrunn, M., de la Rosa, G., Muñoz, M.L., Sánchez-Madrid, F., Sánchez-Mateos, P. Blood (2001) [Pubmed]
  5. Novel mental retardation-epilepsy syndrome linked to Xp21.1-p11.4. Hedera, P., Alvarado, D., Beydoun, A., Fink, J.K. Ann. Neurol. (2002) [Pubmed]
  6. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Hemler, M.E. Annu. Rev. Cell Dev. Biol. (2003) [Pubmed]
  7. Functions of alpha3beta1 integrin. Kreidberg, J.A. Curr. Opin. Cell Biol. (2000) [Pubmed]
  8. Tetraspanin functions and associated microdomains. Hemler, M.E. Nat. Rev. Mol. Cell Biol. (2005) [Pubmed]
  9. EWI-2 regulates alpha3beta1 integrin-dependent cell functions on laminin-5. Stipp, C.S., Kolesnikova, T.V., Hemler, M.E. J. Cell Biol. (2003) [Pubmed]
  10. CD151 regulates epithelial cell-cell adhesion through PKC- and Cdc42-dependent actin cytoskeletal reorganization. Shigeta, M., Sanzen, N., Ozawa, M., Gu, J., Hasegawa, H., Sekiguchi, K. J. Cell Biol. (2003) [Pubmed]
  11. The Inner Loop of Tetraspanins CD82 and CD81 Mediates Interactions with Human T Cell Lymphotrophic Virus Type 1 Gag Protein. Mazurov, D., Heidecker, G., Derse, D. J. Biol. Chem. (2007) [Pubmed]
  12. Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: impact on cell motility. Gesierich, S., Paret, C., Hildebrand, D., Weitz, J., Zgraggen, K., Schmitz-Winnenthal, F.H., Horejsi, V., Yoshie, O., Herlyn, D., Ashman, L.K., Zöller, M. Clin. Cancer Res. (2005) [Pubmed]
  13. Cytoskeleton rearrangement induced by tetraspanin engagement modulates the activation of T and NK cells. Crotta, S., Ronconi, V., Ulivieri, C., Baldari, C.T., Valiente, N.M., Abrignani, S., Wack, A. Eur. J. Immunol. (2006) [Pubmed]
  14. CD63 tetraspanin slows down cell migration and translocates to the endosomal-lysosomal-MIICs route after extracellular stimuli in human immature dendritic cells. Mantegazza, A.R., Barrio, M.M., Moutel, S., Bover, L., Weck, M., Brossart, P., Teillaud, J.L., Mordoh, J. Blood (2004) [Pubmed]
  15. MHC class II/CD38/CD9: a lipid-raft-dependent signaling complex in human monocytes. Zilber, M.T., Setterblad, N., Vasselon, T., Doliger, C., Charron, D., Mooney, N., Gelin, C. Blood (2005) [Pubmed]
  16. Down-regulation of CD9 in human ovarian carcinoma cell might contribute to peritoneal dissemination: morphologic alteration and reduced expression of beta1 integrin subsets. Furuya, M., Kato, H., Nishimura, N., Ishiwata, I., Ikeda, H., Ito, R., Yoshiki, T., Ishikura, H. Cancer Res. (2005) [Pubmed]
  17. Novel differential gene expression in human cirrhosis detected by suppression subtractive hybridization. Shackel, N.A., McGuinness, P.H., Abbott, C.A., Gorrell, M.D., McCaughan, G.W. Hepatology (2003) [Pubmed]
  18. A tetraspanin-family protein, T-cell acute lymphoblastic leukemia-associated antigen 1, is induced by the Ewing's sarcoma-Wilms' tumor 1 fusion protein of desmoplastic small round-cell tumor. Ito, E., Honma, R., Imai, J., Azuma, S., Kanno, T., Mori, S., Yoshie, O., Nishio, J., Iwasaki, H., Yoshida, K., Gohda, J., Inoue, J., Watanabe, S., Semba, K. Am. J. Pathol. (2003) [Pubmed]
  19. The tetraspanin CD9 mediates lateral association of MHC class II molecules on the dendritic cell surface. Unternaehrer, J.J., Chow, A., Pypaert, M., Inaba, K., Mellman, I. Proc. Natl. Acad. Sci. U.S.A. (2007) [Pubmed]
  20. Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Barreiro, O., Yáñez-Mó, M., Sala-Valdés, M., Gutiérrez-López, M.D., Ovalle, S., Higginbottom, A., Monk, P.N., Cabañas, C., Sánchez-Madrid, F. Blood (2005) [Pubmed]
  21. Building of the tetraspanin web: distinct structural domains of CD81 function in different cellular compartments. Shoham, T., Rajapaksa, R., Kuo, C.C., Haimovich, J., Levy, S. Mol. Cell. Biol. (2006) [Pubmed]
  22. Translocation of the tetraspanin CD63 in association with human eosinophil mediator release. Mahmudi-Azer, S., Downey, G.P., Moqbel, R. Blood (2002) [Pubmed]
  23. Syntenin-1 Is a New Component of Tetraspanin-Enriched Microdomains: Mechanisms and Consequences of the Interaction of Syntenin-1 with CD63. Latysheva, N., Muratov, G., Rajesh, S., Padgett, M., Hotchin, N.A., Overduin, M., Berditchevski, F. Mol. Cell. Biol. (2006) [Pubmed]
  24. CD36 associates with CD9 and integrins on human blood platelets. Miao, W.M., Vasile, E., Lane, W.S., Lawler, J. Blood (2001) [Pubmed]
  25. Involvement of alpha3 integrin/tetraspanin complexes in the angiogenic response induced by angiotensin II. Domínguez-Jiménez, C., Yáñez-Mó, M., Carreira, A., Tejedor, R., González-Amaro, R., Alvarez, V., Sánchez-Madrid, F. FASEB J. (2001) [Pubmed]
  26. The carboxy-terminal cysteine of the tetraspanin L6 antigen is required for its interaction with SITAC, a novel PDZ protein. Borrell-Pagès, M., Fernández-Larrea, J., Borroto, A., Rojo, F., Baselga, J., Arribas, J. Mol. Biol. Cell (2000) [Pubmed]
  27. Phosphorylation of the norepinephrine transporter at threonine 258 and serine 259 is linked to protein kinase C-mediated transporter internalization. Jayanthi, L.D., Annamalai, B., Samuvel, D.J., Gether, U., Ramamoorthy, S. J. Biol. Chem. (2006) [Pubmed]
  28. Profiling of the tetraspanin web of human colon cancer cells. Le Naour, F., André, M., Greco, C., Billard, M., Sordat, B., Emile, J.F., Lanza, F., Boucheix, C., Rubinstein, E. Mol. Cell Proteomics (2006) [Pubmed]
  29. Molecular identification and characterization of Xenopus egg uroplakin III, an egg raft-associated transmembrane protein that is tyrosine-phosphorylated upon fertilization. Sakakibara, K., Sato, K., Yoshino, K., Oshiro, N., Hirahara, S., Mahbub Hasan, A.K., Iwasaki, T., Ueda, Y., Iwao, Y., Yonezawa, K., Fukami, Y. J. Biol. Chem. (2005) [Pubmed]
  30. Gastrointestinal tumors: metastasis and tetraspanins. Zöller, M. Zeitschrift für Gastroenterologie. (2006) [Pubmed]
  31. Tetraspanin CD82 regulates compartmentalisation and ligand-induced dimerization of EGFR. Odintsova, E., Voortman, J., Gilbert, E., Berditchevski, F. J. Cell. Sci. (2003) [Pubmed]
  32. Tetraspanin CD63 promotes targeting and lysosomal proteolysis of membrane-type 1 matrix metalloproteinase. Takino, T., Miyamori, H., Kawaguchi, N., Uekita, T., Seiki, M., Sato, H. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
  33. Absence of CD9 Enhances Adhesion-Dependent Morphologic Differentiation, Survival, and Matrix Metalloproteinase-2 Production in Small Cell Lung Cancer Cells. Saito, Y., Tachibana, I., Takeda, Y., Yamane, H., He, P., Suzuki, M., Minami, S., Kijima, T., Yoshida, M., Kumagai, T., Osaki, T., Kawase, I. Cancer Res. (2006) [Pubmed]
  34. RANKL-induced expression of tetraspanin CD9 in lipid raft membrane microdomain is essential for cell fusion during osteoclastogenesis. Ishii, M., Iwai, K., Koike, M., Ohshima, S., Kudo-Tanaka, E., Ishii, T., Mima, T., Katada, Y., Miyatake, K., Uchiyama, Y., Saeki, Y. J. Bone Miner. Res. (2006) [Pubmed]
  35. Predicting protein secondary structure content. A tandem neural network approach. Muskal, S.M., Kim, S.H. J. Mol. Biol. (1992) [Pubmed]
  36. Activation of naïve B lymphocytes via CD81, a pathogenetic mechanism for hepatitis C virus-associated B lymphocyte disorders. Rosa, D., Saletti, G., De Gregorio, E., Zorat, F., Comar, C., D'Oro, U., Nuti, S., Houghton, M., Barnaba, V., Pozzato, G., Abrignani, S. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  37. CD151, the first member of the tetraspanin (TM4) superfamily detected on erythrocytes, is essential for the correct assembly of human basement membranes in kidney and skin. Karamatic Crew, V., Burton, N., Kagan, A., Green, C.A., Levene, C., Flinter, F., Brady, R.L., Daniels, G., Anstee, D.J. Blood (2004) [Pubmed]
  38. Differential cooperation between regulatory sequences required for human CD53 gene expression. Hernández-Torres, J., Yunta, M., Lazo, P.A. J. Biol. Chem. (2001) [Pubmed]
  39. Association between the rat homologue of CO-029, a metastasis-associated tetraspanin molecule and consumption coagulopathy. Claas, C., Seiter, S., Claas, A., Savelyeva, L., Schwab, M., Zöller, M. J. Cell Biol. (1998) [Pubmed]
  40. Eukaryotic expression cloning with an antimetastatic monoclonal antibody identifies a tetraspanin (PETA-3/CD151) as an effector of human tumor cell migration and metastasis. Testa, J.E., Brooks, P.C., Lin, J.M., Quigley, J.P. Cancer Res. (1999) [Pubmed]
  41. Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation. Barrena, S., Almeida, J., Yunta, M., López, A., Fernández-Mosteirín, N., Giralt, M., Romero, M., Perdiguer, L., Delgado, M., Orfao, A., Lazo, P.A. Leukemia (2005) [Pubmed]
 
WikiGenes - Universities