The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

epf  -  epileptiform

Mus musculus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of epf

 

Psychiatry related information on epf

  • This impaired synaptic inhibition may be involved in the epileptiform activity seen in Creutzfeldt-Jakob disease and we argue that loss of function of PrPC may contribute to the early synaptic loss and neuronal degeneration seen in these diseases [6].
  • METHODS: In vivo (minimal electroshock delivered transcorneally) and in vitro techniques (field-potential recordings in neocortical and hippocampal brain slice preparations exposed to bicuculline methiodide) were used to determine whether the susceptibility to epileptiform activity is enhanced in reeler homozygous mice relative to controls [7].
 

High impact information on epf

  • We report here that, in hippocampal slices, selective antagonists of GLU(K5)-containing kainate receptors prevented development of epileptiform activity--evoked by the muscarinic agonist, pilocarpine--and inhibited the activity when it was pre-established [8].
  • The presence of the transgene leads to a complex deregulation of endogenous Shaker genes in the adult central nervous system as well as an increase in network excitability that includes spontaneous cortical spike and wave discharges and a lower threshold for epileptiform bursting in isolated hippocampal slices [9].
  • Neuronal degeneration and Lafora inclusion bodies predate the onset of impaired behavioral responses, ataxia, spontaneous myoclonic seizures and EEG epileptiform activity [10].
  • Our findings demonstrate that interictal discharges of hippocampal origin control the expression of ictal epileptiform activity in the entorhinal cortex [11].
  • Both treatments induce epileptiform activity in hippocampus lasting several hours [12].
 

Chemical compound and disease context of epf

 

Biological context of epf

 

Anatomical context of epf

  • These data indicate that epileptiform physiological activity differentially affects the regulation of 3 neuroactive peptides contained within the hippocampal mossy fiber system and suggest a mechanism through which seizurelike episodes can have a lasting influence on the operation of specific hippocampal circuitries [12].
  • Both effects contribute to depolarising CA3 pyramidal cells and the latter has been implicated in eliciting prolonged epileptiform population bursts [23].
  • In some slices, zero-magnesium cerebrospinal fluid (CSF) was used to evoke spontaneous epileptiform discharges [18].
  • Our data demonstrate that the absence of functional GABA(B) receptors causes epileptiform activity through a mechanism that crucially involves dentate gyrus granule cells, and that this pathological activity is accompanied by adaptive changes [24].
  • In vitro intracellular recordings from three major forebrain regions, neocortex, hippocampus and olfactory (piriform) cortex (OC) showed that only the OC exhibits abnormal enhanced synaptic excitability and spontaneous epileptiform discharges [25].
 

Associations of epf with chemical compounds

 

Regulatory relationships of epf

 

Other interactions of epf

 

Analytical, diagnostic and therapeutic context of epf

References

  1. A mouse model for Glut-1 haploinsufficiency. Wang, D., Pascual, J.M., Yang, H., Engelstad, K., Mao, X., Cheng, J., Yoo, J., Noebels, J.L., De Vivo, D.C. Hum. Mol. Genet. (2006) [Pubmed]
  2. Endogenous neurotrophin-3 regulates short-term plasticity at lateral perforant path-granule cell synapses. Kokaia, M., Asztely, F., Olofsdotter, K., Sindreu, C.B., Kullmann, D.M., Lindvall, O. J. Neurosci. (1998) [Pubmed]
  3. Disruption of PLC-beta 1-mediated signal transduction in mutant mice causes age-dependent hippocampal mossy fiber sprouting and neurodegeneration. Böhm, D., Schwegler, H., Kotthaus, L., Nayernia, K., Rickmann, M., Köhler, M., Rosenbusch, J., Engel, W., Flügge, G., Burfeind, P. Mol. Cell. Neurosci. (2002) [Pubmed]
  4. Effects of focal injection of kainic acid into the mouse hippocampus in vitro and ex vivo. Le Duigou, C., Wittner, L., Danglot, L., Miles, R. J. Physiol. (Lond.) (2005) [Pubmed]
  5. Scrapie infection of transgenic mice leads to network and intrinsic dysfunction of cortical and hippocampal neurones. Jefferys, J.G., Empson, R.M., Whittington, M.A., Prusiner, S.B. Neurobiol. Dis. (1994) [Pubmed]
  6. Prion protein is necessary for normal synaptic function. Collinge, J., Whittington, M.A., Sidle, K.C., Smith, C.J., Palmer, M.S., Clarke, A.R., Jefferys, J.G. Nature (1994) [Pubmed]
  7. Reeler homozygous mice exhibit enhanced susceptibility to epileptiform activity. Patrylo, P.R., Browning, R.A., Cranick, S. Epilepsia (2006) [Pubmed]
  8. Antagonists of GLU(K5)-containing kainate receptors prevent pilocarpine-induced limbic seizures. Smolders, I., Bortolotto, Z.A., Clarke, V.R., Warre, R., Khan, G.M., O'Neill, M.J., Ornstein, P.L., Bleakman, D., Ogden, A., Weiss, B., Stables, J.P., Ho, K.H., Ebinger, G., Collingridge, G.L., Lodge, D., Michotte, Y. Nat. Neurosci. (2002) [Pubmed]
  9. Overexpression of a Shaker-type potassium channel in mammalian central nervous system dysregulates native potassium channel gene expression. Sutherland, M.L., Williams, S.H., Abedi, R., Overbeek, P.A., Pfaffinger, P.J., Noebels, J.L. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  10. Targeted disruption of the Epm2a gene causes formation of Lafora inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired behavioral response in mice. Ganesh, S., Delgado-Escueta, A.V., Sakamoto, T., Avila, M.R., Machado-Salas, J., Hoshii, Y., Akagi, T., Gomi, H., Suzuki, T., Amano, K., Agarwala, K.L., Hasegawa, Y., Bai, D.S., Ishihara, T., Hashikawa, T., Itohara, S., Cornford, E.M., Niki, H., Yamakawa, K. Hum. Mol. Genet. (2002) [Pubmed]
  11. CA3-driven hippocampal-entorhinal loop controls rather than sustains in vitro limbic seizures. Barbarosie, M., Avoli, M. J. Neurosci. (1997) [Pubmed]
  12. Seizures induce dramatic and distinctly different changes in enkephalin, dynorphin, and CCK immunoreactivities in mouse hippocampal mossy fibers. Gall, C. J. Neurosci. (1988) [Pubmed]
  13. Effects of glutamate, N-methyl-D-aspartate, high potassium, and hypoxia on unit discharges in CA1 area of hippocampal slices of DBA and C57 mice. Wang, Z., Chow, S.Y. Epilepsia (1995) [Pubmed]
  14. Evidence for an epileptogenic action of 1-methyl-4-phenyl-1,2,3,6,-tetrahydropyridine. Bonuccelli, U., Fariello, R.G. Neuropharmacology (1989) [Pubmed]
  15. Altered seizure susceptibility in mice lacking the Ca(v)2.3 E-type Ca2+ channel. Weiergräber, M., Henry, M., Krieger, A., Kamp, M., Radhakrishnan, K., Hescheler, J., Schneider, T. Epilepsia (2006) [Pubmed]
  16. Comparison of the effects of losigamone and its isomers on maximal electroshock induced convulsions in mice and on three different patterns of low magnesium induced epileptiform activity in slices of the rat temporal cortex. Zhang, C.L., Chatterjee, S.S., Stein, U., Heinemann, U. Naunyn Schmiedebergs Arch. Pharmacol. (1992) [Pubmed]
  17. Anticonvulsant properties of propofol and thiopentone: comparison using two tests in laboratory mice. Lowson, S., Gent, J.P., Goodchild, C.S. British journal of anaesthesia. (1990) [Pubmed]
  18. Antiepileptic actions of neuropeptide Y in the mouse hippocampus require Y5 receptors. Baraban, S.C. Epilepsia (2002) [Pubmed]
  19. Electrical and chemical long-term depression do not attenuate low-Mg2+-induced epileptiform activity in the entorhinal cortex. Solger, J., Heinemann, U., Behr, J. Epilepsia (2005) [Pubmed]
  20. Long-term changes of ionotropic glutamate and GABA receptors after unilateral permanent focal cerebral ischemia in the mouse brain. Qü, M., Mittmann, T., Luhmann, H.J., Schleicher, A., Zilles, K. Neuroscience (1998) [Pubmed]
  21. Calcium oscillations in neocortical astrocytes under epileptiform conditions. Tashiro, A., Goldberg, J., Yuste, R. J. Neurobiol. (2002) [Pubmed]
  22. Limbic epilepsy induced by tetanus toxin: a longitudinal electroencephalographic study. Hawkins, C.A., Mellanby, J.H. Epilepsia (1987) [Pubmed]
  23. Activation of group I mGluRs elicits different responses in murine CA1 and CA3 pyramidal cells. Chuang, S.C., Zhao, W., Young, S.R., Conquet, F., Bianchi, R., Wong, R.K. J. Physiol. (Lond.) (2002) [Pubmed]
  24. Altered hippocampal expression of calbindin-D-28k and calretinin in GABA(B(1))-deficient mice. Rüttimann, E., Vacher, C.M., Gassmann, M., Kaupmann, K., Van der Putten, H., Bettler, B. Biochem. Pharmacol. (2004) [Pubmed]
  25. Sox1-deficient mice suffer from epilepsy associated with abnormal ventral forebrain development and olfactory cortex hyperexcitability. Malas, S., Postlethwaite, M., Ekonomou, A., Whalley, B., Nishiguchi, S., Wood, H., Meldrum, B., Constanti, A., Episkopou, V. Neuroscience (2003) [Pubmed]
  26. Altered GABAergic neurotransmission in mice lacking dopamine D2 receptors. An, J.J., Bae, M.H., Cho, S.R., Lee, S.H., Choi, S.H., Lee, B.H., Shin, H.S., Kim, Y.N., Park, K.W., Borrelli, E., Baik, J.H. Mol. Cell. Neurosci. (2004) [Pubmed]
  27. Reduction of high-frequency network oscillations (ripples) and pathological network discharges in hippocampal slices from connexin 36-deficient mice. Maier, N., Güldenagel, M., Söhl, G., Siegmund, H., Willecke, K., Draguhn, A. J. Physiol. (Lond.) (2002) [Pubmed]
  28. Model of frequent, recurrent, and spontaneous seizures in the intact mouse hippocampus. Derchansky, M., Shahar, E., Wennberg, R.A., Samoilova, M., Jahromi, S.S., Abdelmalik, P.A., Zhang, L., Carlen, P.L. Hippocampus. (2004) [Pubmed]
  29. Synthesis of 1,4,7,8,9,10-hexahydro-9-methyl-6-nitropyrido[3,4-f]- quinoxaline-2,3-dione and related quinoxalinediones: characterization of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (and N-methyl-D-aspartate) receptor and anticonvulsant activity. Bigge, C.F., Malone, T.C., Boxer, P.A., Nelson, C.B., Ortwine, D.F., Schelkun, R.M., Retz, D.M., Lescosky, L.J., Borosky, S.A., Vartanian, M.G. J. Med. Chem. (1995) [Pubmed]
  30. Role of synaptic metabotropic glutamate receptors in epileptiform discharges in hippocampal slices. Lee, A.C., Wong, R.K., Chuang, S.C., Shin, H.S., Bianchi, R. J. Neurophysiol. (2002) [Pubmed]
  31. Distinct roles for the kainate receptor subunits GluR5 and GluR6 in kainate-induced hippocampal gamma oscillations. Fisahn, A., Contractor, A., Traub, R.D., Buhl, E.H., Heinemann, S.F., McBain, C.J. J. Neurosci. (2004) [Pubmed]
  32. Neuropeptide Y inhibits in vitro epileptiform activity in the entorhinal cortex of mice. Woldbye, D.P., Nanobashvili, A., Husum, H., Bolwig, T.G., Kokaia, M. Neurosci. Lett. (2002) [Pubmed]
  33. Extracellular signal-regulated kinase 1/2 is required for the induction of group I metabotropic glutamate receptor-mediated epileptiform discharges. Zhao, W., Bianchi, R., Wang, M., Wong, R.K. J. Neurosci. (2004) [Pubmed]
  34. Anticonvulsant activity of androsterone and etiocholanolone. Kaminski, R.M., Marini, H., Kim, W.J., Rogawski, M.A. Epilepsia (2005) [Pubmed]
  35. Sleep and epilepsy. Kellaway, P. Epilepsia (1985) [Pubmed]
  36. Modular propagation of epileptiform activity: evidence for an inhibitory veto in neocortex. Trevelyan, A.J., Sussillo, D., Watson, B.O., Yuste, R. J. Neurosci. (2006) [Pubmed]
  37. Elevation of corazol-induced seizure threshold after active immunization of mice of various genetic strains with glutamate-bovine serum albumin conjugate. Karpova, M.N., Vetrile, L.A., Klishina, N.Y., Trekova, N.A., Kuznetsova, L.V., Evseev, V.A. Bull. Exp. Biol. Med. (2003) [Pubmed]
 
WikiGenes - Universities