The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Ltb  -  lymphotoxin B

Mus musculus

Synonyms: AI662801, LT-beta, LTbeta, Lymphotoxin-beta, TNF-C, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Ltb

  • Because of the importance of TNF in the pathogenesis of septic shock, the expression of LT-alpha and LT-beta mRNA in murine splenocytes stimulated with different pro-inflammatory cytokines, sepsis-associated mediators such as lipopolysaccharide (LPS) and bacterial superantigens was investigated [1].
  • Using C57Bl/6 mice in which the genes for these cytokines have been disrupted, we have examined the relative contribution of secreted LTalpha3 and membrane-bound LTbeta in the host response to aerosol Mycobacterium tuberculosis infection [2].
  • Both LTbeta- and LTalpha-deficient mice show significant lymphocytosis in the circulation and peritoneal cavity and lymphocytic infiltrations in lungs and liver [3].
  • Furthermore, normal HSV-2-specific IgG responses were generated in the LT beta-deficient mice following intravaginal HSV-2 infection even in the absence of the spleen [4].
  • MAdCAM-1 expressing sacral lymph node in the lymphotoxin beta-deficient mouse provides a site for immune generation following vaginal herpes simplex virus-2 infection [4].
 

Psychiatry related information on Ltb

 

High impact information on Ltb

 

Chemical compound and disease context of Ltb

 

Biological context of Ltb

 

Anatomical context of Ltb

 

Associations of Ltb with chemical compounds

  • Additionally, the spleens of the neo-free LTalpha KO mice displayed several features resembling those of LTbeta KO mice rather than conventional LTalpha KO animals [17].
  • Loss of LTbeta and LTbeta receptor signaling reduced the number of oval cells expressing A6 and muscle pyruvate kinase [11].
  • Localization of an endogenous ADP-ribose acceptor, p33, in polymorphonuclear cell granules in chicken liver interlobular connective tissue [18].
  • We investigated immunohistochemically the localization of p33, an endogenous substrate protein for an arginine-specific ADP-ribosyltransferase in chicken liver [18].
  • Lymphotoxin-beta and TNF regulation in T cell subsets: differential effects of PGE2 [19].
 

Regulatory relationships of Ltb

  • Here, a single treatment with LT beta R-Ig before intraperitoneal scrapie inoculation blocked the early accumulation of infectivity and disease-specific PrP (PrP(Sc)) within the spleen and substantially reduced disease susceptibility [20].
  • Inhibition of LT alpha/beta signaling using LT betaR-Ig or a blocking monoclonal antibody against murine LT beta had profound effects [21].
  • LT-beta(-/-) HEVs expressed only abluminal PNAd and no HEC-6ST or GlyCAM-1 [22].
 

Other interactions of Ltb

 

Analytical, diagnostic and therapeutic context of Ltb

References

  1. The role of lipopolysaccharide, pro-inflammatory cytokines and bacterial superantigens in the transcriptional regulation of lymphotoxin alpha and beta in mouse splenocytes. Zinetti, M., Agyekum, S., Evans, T., Polak, J., Cohen, J. Cytokine (1998) [Pubmed]
  2. Secreted lymphotoxin-alpha is essential for the control of an intracellular bacterial infection. Roach, D.R., Briscoe, H., Saunders, B., France, M.P., Riminton, S., Britton, W.J. J. Exp. Med. (2001) [Pubmed]
  3. Abnormal development of secondary lymphoid tissues in lymphotoxin beta-deficient mice. Alimzhanov, M.B., Kuprash, D.V., Kosco-Vilbois, M.H., Luz, A., Turetskaya, R.L., Tarakhovsky, A., Rajewsky, K., Nedospasov, S.A., Pfeffer, K. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  4. MAdCAM-1 expressing sacral lymph node in the lymphotoxin beta-deficient mouse provides a site for immune generation following vaginal herpes simplex virus-2 infection. Soderberg, K.A., Linehan, M.M., Ruddle, N.H., Iwasaki, A. J. Immunol. (2004) [Pubmed]
  5. Follicular dendritic cells and dissemination of Creutzfeldt-Jakob disease. Manuelidis, L., Zaitsev, I., Koni, P., Lu, Z.Y., Flavell, R.A., Fritch, W. J. Virol. (2000) [Pubmed]
  6. Defective lymphotoxin-beta receptor-induced NF-kappaB transcriptional activity in NIK-deficient mice. Yin, L., Wu, L., Wesche, H., Arthur, C.D., White, J.M., Goeddel, D.V., Schreiber, R.D. Science (2001) [Pubmed]
  7. Distinct role of surface lymphotoxin expressed by B cells in the organization of secondary lymphoid tissues. Tumanov, A., Kuprash, D., Lagarkova, M., Grivennikov, S., Abe, K., Shakhov, A., Drutskaya, L., Stewart, C., Chervonsky, A., Nedospasov, S. Immunity (2002) [Pubmed]
  8. Distinct roles in lymphoid organogenesis for lymphotoxins alpha and beta revealed in lymphotoxin beta-deficient mice. Koni, P.A., Sacca, R., Lawton, P., Browning, J.L., Ruddle, N.H., Flavell, R.A. Immunity (1997) [Pubmed]
  9. On the role of APC-activation for in vitro versus in vivo T cell priming. Storni, T., Bachmann, M.F. Cell. Immunol. (2003) [Pubmed]
  10. Distinct contributions of TNF and LT cytokines to the development of dendritic cells in vitro and their recruitment in vivo. Abe, K., Yarovinsky, F.O., Murakami, T., Shakhov, A.N., Tumanov, A.V., Ito, D., Drutskaya, L.N., Pfeffer, K., Kuprash, D.V., Komschlies, K.L., Nedospasov, S.A. Blood (2003) [Pubmed]
  11. Differential lymphotoxin-beta and interferon gamma signaling during mouse liver regeneration induced by chronic and acute injury. Akhurst, B., Matthews, V., Husk, K., Smyth, M.J., Abraham, L.J., Yeoh, G.C. Hepatology (2005) [Pubmed]
  12. Dissecting the role of lymphotoxin in lymphoid organs by conditional targeting. Tumanov, A.V., Grivennikov, S.I., Shakhov, A.N., Rybtsov, S.A., Koroleva, E.P., Takeda, J., Nedospasov, S.A., Kuprash, D.V. Immunol. Rev. (2003) [Pubmed]
  13. The lymphotoxin beta receptor is critically involved in controlling infections with the intracellular pathogens Mycobacterium tuberculosis and Listeria monocytogenes. Ehlers, S., Hölscher, C., Scheu, S., Tertilt, C., Hehlgans, T., Suwinski, J., Endres, R., Pfeffer, K. J. Immunol. (2003) [Pubmed]
  14. A role for tumor necrosis factor receptor type 1 in gut-associated lymphoid tissue development: genetic evidence of synergism with lymphotoxin beta. Koni, P.A., Flavell, R.A. J. Exp. Med. (1998) [Pubmed]
  15. Mature follicular dendritic cell networks depend on expression of lymphotoxin beta receptor by radioresistant stromal cells and of lymphotoxin beta and tumor necrosis factor by B cells. Endres, R., Alimzhanov, M.B., Plitz, T., Fütterer, A., Kosco-Vilbois, M.H., Nedospasov, S.A., Rajewsky, K., Pfeffer, K. J. Exp. Med. (1999) [Pubmed]
  16. Differential activities of secreted lymphotoxin-alpha3 and membrane lymphotoxin-alpha1beta2 in lymphotoxin-induced inflammation: critical role of TNF receptor 1 signaling. Sacca, R., Cuff, C.A., Lesslauer, W., Ruddle, N.H. J. Immunol. (1998) [Pubmed]
  17. Novel lymphotoxin alpha (LTalpha) knockout mice with unperturbed tumor necrosis factor expression: reassessing LTalpha biological functions. Liepinsh, D.J., Grivennikov, S.I., Klarmann, K.D., Lagarkova, M.A., Drutskaya, M.S., Lockett, S.J., Tessarollo, L., McAuliffe, M., Keller, J.R., Kuprash, D.V., Nedospasov, S.A. Mol. Cell. Biol. (2006) [Pubmed]
  18. Localization of an endogenous ADP-ribose acceptor, p33, in polymorphonuclear cell granules in chicken liver interlobular connective tissue. Osago, H., Mishima, K., Tsuchiya, M., Tanigawa, Y., Umeno, T., Shimoyama, M. Biochem. Biophys. Res. Commun. (1991) [Pubmed]
  19. Lymphotoxin-beta and TNF regulation in T cell subsets: differential effects of PGE2. Ferreri, N.R., Millet, I., Askari, B., Magnani, P., Ruddle, N.H. Cytokine (1997) [Pubmed]
  20. Follicular dendritic cell dedifferentiation by treatment with an inhibitor of the lymphotoxin pathway dramatically reduces scrapie susceptibility. Mabbott, N.A., Young, J., McConnell, I., Bruce, M.E. J. Virol. (2003) [Pubmed]
  21. Lymphotoxin but not tumor necrosis factor functions to maintain splenic architecture and humoral responsiveness in adult mice. Mackay, F., Majeau, G.R., Lawton, P., Hochman, P.S., Browning, J.L. Eur. J. Immunol. (1997) [Pubmed]
  22. Lymphotoxin plays a crucial role in the development and function of nasal-associated lymphoid tissue through regulation of chemokines and peripheral node addressin. Ying, X., Chan, K., Shenoy, P., Hill, M., Ruddle, N.H. Am. J. Pathol. (2005) [Pubmed]
  23. Differential regulation of lymphotoxin (LT), lymphotoxin-beta (LT-beta), and TNF-alpha in murine T cell clones activated through the TCR. Millet, I., Ruddle, N.H. J. Immunol. (1994) [Pubmed]
  24. Effect of mature lymphocytes and lymphotoxin on the development of the follicle-associated epithelium and M cells in mouse Peyer's patches. Debard, N., Sierro, F., Browning, J., Kraehenbuhl, J.P. Gastroenterology (2001) [Pubmed]
  25. Mature T cell reactivity altered by peptide agonist that induces positive selection. Sebzda, E., Kündig, T.M., Thomson, C.T., Aoki, K., Mak, S.Y., Mayer, J.P., Zamborelli, T., Nathenson, S.G., Ohashi, P.S. J. Exp. Med. (1996) [Pubmed]
  26. Cross-presentation of virus-like particles by skin-derived CD8(-) dendritic cells: a dispensable role for TAP. Ruedl, C., Storni, T., Lechner, F., Bächi, T., Bachmann, M.F. Eur. J. Immunol. (2002) [Pubmed]
 
WikiGenes - Universities