The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Myh1  -  myosin, heavy polypeptide 1, skeletal...

Mus musculus

Synonyms: A530084A17Rik, IId, IId/x, MHC-2X/D, MHC2X/D, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Myh1

 

Psychiatry related information on Myh1

 

High impact information on Myh1

  • Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells [7].
  • Clones of myoblasts analyzed in vitro express fast and slow myosin isoforms typical of the muscle from which they derive [8].
  • We previously documented a greater than 100-fold rostrocaudal gradient of chloramphenicol acetyltransferase (CAT) expression in the muscles of adult mice that bear a myosin light chain-CAT transgene: successively more caudal muscles express successively higher levels of CAT [9].
  • Developmental progression of myosin gene expression in cultured muscle cells [10].
  • Our results demonstrate that a developmental progression in myosin gene expression, which occurs rapidly, with high frequency, and under relatively simple conditions, is now amenable to molecular analysis in cultured muscle cells [10].
 

Chemical compound and disease context of Myh1

 

Biological context of Myh1

 

Anatomical context of Myh1

  • Cloned myosin heavy chain DNA probes from rat and human were hybridized to restriction endonuclease digests of genomic DNA from somatic cell hybrids and their parental cells [16].
  • Myosin in adult murine skeletal muscle is composed primarily of three adult fast myosin heavy chain (MyHC) isoforms [1].
  • In the present study, the expression of seven sarcomeric MyHCs was analyzed in the hindlimb muscles of wild-type mice and in mice null for the MyHC IIb or IId/x genes at several time points from 1 day of postnatal life (dpn) to 20 dpn [20].
  • Three linked myosin heavy chain genes clustered within 370 kb of each other show independent transcriptional and post-transcriptional regulation during differentiation of a mouse muscle cell line [21].
  • In transgenic myotomal cells, in contrast, precocious expression of MRF4 accelerated late events in myogenesis, including myosin expression and striated myofibril formation [22].
 

Associations of Myh1 with chemical compounds

 

Physical interactions of Myh1

 

Enzymatic interactions of Myh1

  • 208-kDa MLCK phosphorylates 20-kDa myosin light chains in a Ca2+/calmodulin-dependent manner, consistent with it being a member of the MLCK family [32].
 

Regulatory relationships of Myh1

  • Incubating the cells with 300 ng/ml of BMP-2 for 6 d almost completely inhibited the formation of the multinucleated myotubes expressing troponin T and myosin heavy chain, and induced the appearance of numerous alkaline phosphatase (ALP)-positive cells [33].
  • Myogenin-deficient fetuses that expressed the transgene also had more myosin, more and larger myofibers, and a more normal ribcage morphology than myogenin-deficient littermates without the transgene [34].
  • Aroclor-dependent inhibition of myogenic differentiation was also shown by the reduced expression and nuclear accumulation of beta-galactosidase in primary cultures of fetal myoblasts from transgenic mice expressing this reporter gene under the control of the myosin light chain promoter [35].
  • In contrast to other reports, the presence of as many as six copies of the c-Ha-ras gene per genome did not prevent the formation of striated muscle cells which expressed immunologically detectable muscle-specific myosin [36].
  • Urocortin-induced decrease in Ca2+ sensitivity of contraction in mouse tail arteries is attributable to cAMP-dependent dephosphorylation of MYPT1 and activation of myosin light chain phosphatase [37].
 

Other interactions of Myh1

  • Despite this universal compensation of MyHC-IIa expression, IId null mice have severe phenotypes [1].
  • MyHC-IIb content was unaffected in all muscles except the masseter, where its expression was extinguished in the IId null mice [1].
  • Surprisingly, expression of Pan1 and Pan2 exhibited a strong negative effect on cardiac expression of the myosin light chain-2 promoter [38].
  • For example, in the myotome, when myosin light chain genes are initially transcribed, hybridization signal with probe for MLC1A mRNA is greater than that with probe for MLC1F transcripts, whereas the relative intensity of signal with these same probes is reversed in the hindlimb [39].
  • In the myotome, an intense hybridization signal for alpha-cardiac and a weak signal for alpha-skeletal actin transcripts are detectable prior to myosin mRNAs, whereas in the limb alpha-cardiac actin transcripts accumulate with myosin transcripts before alpha-skeletal actin mRNA is detectable [39].
 

Analytical, diagnostic and therapeutic context of Myh1

References

  1. Myosin heavy chains IIa and IId are functionally distinct in the mouse. Sartorius, C.A., Lu, B.D., Acakpo-Satchivi, L., Jacobsen, R.P., Byrnes, W.C., Leinwand, L.A. J. Cell Biol. (1998) [Pubmed]
  2. Possible interrelationship between changes in F-actin and myosin II, protein phosphorylation, and cell volume regulation in Ehrlich ascites tumor cells. Pedersen, S.F., Hoffmann, E.K. Exp. Cell Res. (2002) [Pubmed]
  3. Deletion of vitamin D receptor gene in mice results in abnormal skeletal muscle development with deregulated expression of myoregulatory transcription factors. Endo, I., Inoue, D., Mitsui, T., Umaki, Y., Akaike, M., Yoshizawa, T., Kato, S., Matsumoto, T. Endocrinology (2003) [Pubmed]
  4. In vitro differentiation of rhabdomyosarcomas induced by nickel or by Moloney murine sarcoma virus. Nanni, P., Azzarello, G., Tessarollo, L., De Giovanni, C., Lollini, P.L., Nicoletti, G., Scotlandi, K., Landuzzi, L., Panozzo, M., D'Andrea, E. Br. J. Cancer (1991) [Pubmed]
  5. Myosin light chain phosphorylation does not modulate cross-bridge cycling rate in mouse skeletal muscle. Butler, T.M., Siegman, M.J., Mooers, S.U., Barsotti, R.J. Science (1983) [Pubmed]
  6. Glycine 699 is pivotal for the motor activity of skeletal muscle myosin. Kinose, F., Wang, S.X., Kidambi, U.S., Moncman, C.L., Winkelmann, D.A. J. Cell Biol. (1996) [Pubmed]
  7. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Gomes, E.R., Jani, S., Gundersen, G.G. Cell (2005) [Pubmed]
  8. Muscle fiber pattern is independent of cell lineage in postnatal rodent development. Hughes, S.M., Blau, H.M. Cell (1992) [Pubmed]
  9. Mammalian muscle cells bear a cell-autonomous, heritable memory of their rostrocaudal position. Donoghue, M.J., Morris-Valero, R., Johnson, Y.R., Merlie, J.P., Sanes, J.R. Cell (1992) [Pubmed]
  10. Developmental progression of myosin gene expression in cultured muscle cells. Silberstein, L., Webster, S.G., Travis, M., Blau, H.M. Cell (1986) [Pubmed]
  11. Induction of autoimmunity in the absence of CD28 costimulation. Bachmaier, K., Pummerer, C., Shahinian, A., Ionescu, J., Neu, N., Mak, T.W., Penninger, J.M. J. Immunol. (1996) [Pubmed]
  12. Captopril prevents experimental autoimmune myocarditis. Godsel, L.M., Leon, J.S., Wang, K., Fornek, J.L., Molteni, A., Engman, D.M. J. Immunol. (2003) [Pubmed]
  13. Regulation by thyroid hormones of terminal differentiation in the skeletal dorsal muscle. I. Neonate mouse. d'Albis, A., Lenfant-Guyot, M., Janmot, C., Chanoine, C., Weinman, J., Gallien, C.L. Dev. Biol. (1987) [Pubmed]
  14. T-Cell-dependent antibody response to the dominant epitope of streptococcal polysaccharide, N-acetyl-glucosamine, is cross-reactive with cardiac myosin. Malkiel, S., Liao, L., Cunningham, M.W., Diamond, B. Infect. Immun. (2000) [Pubmed]
  15. MSAP enhances migration of C6 glioma cells through phosphorylation of the myosin regulatory light chain. Bornhauser, B.C., Lindholm, D. Cell. Mol. Life Sci. (2005) [Pubmed]
  16. Multigene family for sarcomeric myosin heavy chain in mouse and human DNA: localization on a single chromosome. Leinwand, L.A., Fournier, R.E., Nadal-Ginard, B., Shows, T.B. Science (1983) [Pubmed]
  17. Different pathways regulate expression of the skeletal myosin heavy chain genes. Allen, D.L., Sartorius, C.A., Sycuro, L.K., Leinwand, L.A. J. Biol. Chem. (2001) [Pubmed]
  18. Diversity in transcriptional start site selection and alternative splicing affects the 5'-UTR of mouse striated muscle myosin transcripts. Dennehey, B.K., Leinwand, L.A., Krauter, K.S. J. Muscle Res. Cell. Motil. (2006) [Pubmed]
  19. Sequential accumulation of mRNAs encoding different myosin heavy chain isoforms during skeletal muscle development in vivo detected with a recombinant plasmid identified as coding for an adult fast myosin heavy chain from mouse skeletal muscle. Weydert, A., Daubas, P., Caravatti, M., Minty, A., Bugaisky, G., Cohen, A., Robert, B., Buckingham, M. J. Biol. Chem. (1983) [Pubmed]
  20. Postnatal myosin heavy chain isoform expression in normal mice and mice null for IIb or IId myosin heavy chains. Allen, D.L., Leinwand, L.A. Dev. Biol. (2001) [Pubmed]
  21. Three linked myosin heavy chain genes clustered within 370 kb of each other show independent transcriptional and post-transcriptional regulation during differentiation of a mouse muscle cell line. Cox, R.D., Weydert, A., Barlow, D., Buckingham, M.E. Dev. Biol. (1991) [Pubmed]
  22. Acceleration of somitic myogenesis in embryos of myogenin promoter-MRF4 transgenic mice. Block, N.E., Zhu, Z., Kachinsky, A.M., Dominov, J.A., Miller, J.B. Dev. Dyn. (1996) [Pubmed]
  23. Expression of E1A in terminally differentiated muscle cells reactivates the cell cycle and suppresses tissue-specific genes by separable mechanisms. Tiainen, M., Spitkovsky, D., Jansen-Dürr, P., Sacchi, A., Crescenzi, M. Mol. Cell. Biol. (1996) [Pubmed]
  24. Activation of myoD gene transcription by 3,5,3'-triiodo-L-thyronine: a direct role for the thyroid hormone and retinoid X receptors. Muscat, G.E., Mynett-Johnson, L., Dowhan, D., Downes, M., Griggs, R. Nucleic Acids Res. (1994) [Pubmed]
  25. Loss of beta1 integrin function results in a retardation of myogenic, but an acceleration of neuronal, differentiation of embryonic stem cells in vitro. Rohwedel, J., Guan, K., Zuschratter, W., Jin, S., Ahnert-Hilger, G., Fürst, D., Fässler, R., Wobus, A.M. Dev. Biol. (1998) [Pubmed]
  26. Akt1 and Akt2 differently regulate muscle creatine kinase and myogenin gene transcription in insulin-induced differentiation of C2C12 myoblasts. Sumitani, S., Goya, K., Testa, J.R., Kouhara, H., Kasayama, S. Endocrinology (2002) [Pubmed]
  27. Both a ubiquitous factor mTEF-1 and a distinct muscle-specific factor bind to the M-CAT motif of the myosin heavy chain beta gene. Shimizu, N., Smith, G., Izumo, S. Nucleic Acids Res. (1993) [Pubmed]
  28. Paired MyoD-binding sites regulate myosin light chain gene expression. Wentworth, B.M., Donoghue, M., Engert, J.C., Berglund, E.B., Rosenthal, N. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  29. cDNA cloning and characterization of murine transcriptional enhancer factor-1-related protein 1, a transcription factor that binds to the M-CAT motif. Yockey, C.E., Smith, G., Izumo, S., Shimizu, N. J. Biol. Chem. (1996) [Pubmed]
  30. Expression of the metastasis-associated mts1 gene during mouse development. Klingelhöfer, J., Ambartsumian, N.S., Lukanidin, E.M. Dev. Dyn. (1997) [Pubmed]
  31. Increased association of dynamin II with myosin II in ras transformed NIH3T3 cells. Jeong, S.J., Kim, S.G., Yoo, J., Han, M.Y., Park, J.C., Kim, H.J., Kang, S.S., Choi, B.D., Jeong, M.J. Acta Biochim. Biophys. Sin. (Shanghai) (2006) [Pubmed]
  32. Expression of a novel myosin light chain kinase in embryonic tissues and cultured cells. Gallagher, P.J., Garcia, J.G., Herring, B.P. J. Biol. Chem. (1995) [Pubmed]
  33. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. Katagiri, T., Yamaguchi, A., Komaki, M., Abe, E., Takahashi, N., Ikeda, T., Rosen, V., Wozney, J.M., Fujisawa-Sehara, A., Suda, T. J. Cell Biol. (1994) [Pubmed]
  34. MRF4 can substitute for myogenin during early stages of myogenesis. Zhu, Z., Miller, J.B. Dev. Dyn. (1997) [Pubmed]
  35. Polychlorobiphenyls inhibit skeletal muscle differentiation in culture. Coletti, D., Palleschi, S., Silvestroni, L., Cannavò, A., Vivarelli, E., Tomei, F., Molinaro, M., Adamo, S. Toxicol. Appl. Pharmacol. (2001) [Pubmed]
  36. Effect of cellular determination on oncogenic transformation by chemicals and oncogenes. Harrington, M.A., Gonzales, F., Jones, P.A. Mol. Cell. Biol. (1988) [Pubmed]
  37. Urocortin-induced decrease in Ca2+ sensitivity of contraction in mouse tail arteries is attributable to cAMP-dependent dephosphorylation of MYPT1 and activation of myosin light chain phosphatase. Lubomirov, L.T., Reimann, K., Metzler, D., Hasse, V., Stehle, R., Ito, M., Hartshorne, D.J., Gagov, H., Pfitzer, G., Schubert, R. Circ. Res. (2006) [Pubmed]
  38. Potential role of helix-loop-helix proteins in cardiac gene expression. Evans, S.M., Walsh, B.A., Newton, C.B., Thorburn, J.S., Gardner, P.D., van Bilsen, M. Circ. Res. (1993) [Pubmed]
  39. Contractile protein gene expression in primary myotubes of embryonic mouse hindlimb muscles. Ontell, M., Ontell, M.P., Sopper, M.M., Mallonga, R., Lyons, G., Buckingham, M. Development (1993) [Pubmed]
  40. M-twist expression inhibits mouse embryonic stem cell-derived myogenic differentiation in vitro. Rohwedel, J., Horák, V., Hebrok, M., Füchtbauer, E.M., Wobus, A.M. Exp. Cell Res. (1995) [Pubmed]
  41. Early development of the myotome in the mouse. Venters, S.J., Thorsteinsdóttir, S., Duxson, M.J. Dev. Dyn. (1999) [Pubmed]
  42. C2C12 co-culture on a fibroblast substratum enables sustained survival of contractile, highly differentiated myotubes with peripheral nuclei and adult fast myosin expression. Cooper, S.T., Maxwell, A.L., Kizana, E., Ghoddusi, M., Hardeman, E.C., Alexander, I.E., Allen, D.G., North, K.N. Cell Motil. Cytoskeleton (2004) [Pubmed]
  43. Myotube formation is delayed but not prevented in MyoD-deficient skeletal muscle: studies in regenerating whole muscle grafts of adult mice. White, J.D., Scaffidi, A., Davies, M., McGeachie, J., Rudnicki, M.A., Grounds, M.D. J. Histochem. Cytochem. (2000) [Pubmed]
  44. Effect of phase limited inhibition of MyoD expression on the terminal differentiation of bovine myoblasts: no alteration of Myf5 or myogenin expression. Muroya, S., Nakajima, I., Oe, M., Chikuni, K. Dev. Growth Differ. (2005) [Pubmed]
 
WikiGenes - Universities