The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

pO157p35  -  reverse transcriptase

Escherichia coli O157:H7 str. Sakai

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of pO157p35

 

Psychiatry related information on pO157p35

  • We examined several variables that affected the efficiency of the reaction: (i) the reaction time, (ii) the relative amounts of acceptor and donor template, (iii) the extent of sequence overlap between the donor and acceptor templates, and (iv) the presence or absence of RNase H activity associated with the reverse transcriptase [4].
 

High impact information on pO157p35

 

Chemical compound and disease context of pO157p35

 

Biological context of pO157p35

  • Telomerase is a specialized reverse transcriptase that catalyzes telomeric repeat addition at the ends of existing telomeres or fragmented chromosomes [12].
  • Our results suggest how the maturase functions in RNA splicing and support the hypothesis that the reverse transcriptase coding region was derived from an independent genetic element that was inserted into a preexisting group II intron [13].
  • To determine the binding site precisely, we developed a new method which we have named 'reverse-transcriptase mapping'. The RNA transcribed from the pL promoter was incubated with 32P-labelled DNA primer and NusA, and the primer-extension reaction was started by adding the reverse transcriptase [14].
  • Furthermore, nucleotide incorporation by the pre-formed primer-template-RT complexes is reduced by a approximately 50-fold factor during initiation of reverse transcription, compared with elongation [15].
  • Thus, a central HIV pol gene segment encodes and is sufficient for high levels of RT activity [16].
 

Anatomical context of pO157p35

 

Associations of pO157p35 with chemical compounds

  • Analysis of the recombinant mutant reverse transcriptase from a number of these constructs revealed enzymes that maintained enzyme activity but had a reduced ability to recognize inhibitors such as azidothymidine triphosphate [17].
  • Many of these constructs express high levels of reverse transcriptase activity even though the NH2 and COOH termini of the protein product only approximate the correct termini of the authentic protein [22].
  • Specific binding of tryptophan transfer RNA to avian myeloblastosis virus RNA-dependent DNA polymerase (reverse transcriptase) [23].
  • It lost its sensitivity to the TSAO nucleosides but not to the other HIV-1-specific RT inhibitors (i.e., TIBO and pyridinone) [10].
  • The K65R and K65R/M184V RTs showed significantly decreased chain-termination effects during polymerization with the 5'-triphosphates of ddC, 3TC, 2',3'-dideoxyadenosine, and AZT (3'-azido-3'-deoxythymidine) in comparison with wild-type RT [9].
 

Other interactions of pO157p35

 

Analytical, diagnostic and therapeutic context of pO157p35

  • The causative agent of AIDS the human immunodeficiency virus (HIV) encodes as part of its pol gene a reverse transcriptase (RT) which has a key role in the replication of the virus and thus constitutes an ideal target for antiviral chemotherapy [16].
  • The other assay used Western blot analysis to estimate the stability of each mutant protein by measuring the processing of the RT into its mature heterodimeric form, consisting of a 66-kDa subunit and a 51-kDa subunit [28].
  • HIV-1 RT in which the Glu-138-->Lys substitution was introduced by site-directed mutagenesis and expressed in Escherichia coli could not be purified because of rapid degradation [10].
  • Deletion mapping and sequence analysis showed that the RT activity of Streptomcyces TopA resides in a peptide region containing motifs that are absent from most bacterial topoisomerases but are highly conserved in a novel subfamily of eubacterial topoisomerases found largely in Actinobacteria [19].
  • Metal chelate affinity chromatography has been used to follow reconstitution of the 66- and 51-kDa human immunodeficiency (HIV)-1 and HIV-2 reverse transcriptase (RT) subunits into heterodimer, as well as chimeric enzymes comprised of heterologous subunits [29].

References

  1. Reverse transcriptase-dependent synthesis of a covalently linked, branched DNA-RNA compound in E. coli B. Lim, D., Maas, W.K. Cell (1989) [Pubmed]
  2. The accuracy of reverse transcriptase from HIV-1. Roberts, J.D., Bebenek, K., Kunkel, T.A. Science (1988) [Pubmed]
  3. A bacterial group II intron encoding reverse transcriptase, maturase, and DNA endonuclease activities: biochemical demonstration of maturase activity and insertion of new genetic information within the intron. Matsuura, M., Saldanha, R., Ma, H., Wank, H., Yang, J., Mohr, G., Cavanagh, S., Dunny, G.M., Belfort, M., Lambowitz, A.M. Genes Dev. (1997) [Pubmed]
  4. Template switching by reverse transcriptase during DNA synthesis. Luo, G.X., Taylor, J. J. Virol. (1990) [Pubmed]
  5. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Luan, D.D., Korman, M.H., Jakubczak, J.L., Eickbush, T.H. Cell (1993) [Pubmed]
  6. Reverse transcriptase in leukocytes of leukemic patients in remission. Viola, M.V., Frazier, M., Wiernik, P.H., McCredie, K.B., Spiegelman, S. N. Engl. J. Med. (1976) [Pubmed]
  7. Bacterial cloning of plasmids carrying copies of rabbit globin messenger RNA. Rabbitts, T.H. Nature (1976) [Pubmed]
  8. Human immunodeficiency virus reverse transcriptase substitutes for DNA polymerase I in Escherichia coli. Kim, B., Loeb, L.A. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  9. Mutated K65R recombinant reverse transcriptase of human immunodeficiency virus type 1 shows diminished chain termination in the presence of 2',3'-dideoxycytidine 5'-triphosphate and other drugs. Gu, Z., Arts, E.J., Parniak, M.A., Wainberg, M.A. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  10. Human immunodeficiency virus type 1 (HIV-1) strains selected for resistance against the HIV-1-specific [2',5'-bis-O-(tert-butyldimethylsilyl)-3'-spiro- 5''-(4''-amino-1'',2''-oxathiole-2'',2''-dioxide)]-beta-D-pentofurano syl (TSAO) nucleoside analogues retain sensitivity to HIV-1-specific nonnucleoside inhibitors. Balzarini, J., Karlsson, A., Vandamme, A.M., Pérez-Pérez, M.J., Zhang, H., Vrang, L., Oberg, B., Bäckbro, K., Unge, T., San-Félix, A. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  11. Reverse transcriptase pauses at N2-methylguanine during in vitro transcription of Escherichia coli 16S ribosomal RNA. Youvan, D.C., Hearst, J.E. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  12. Interaction of recombinant Tetrahymena telomerase proteins p80 and p95 with telomerase RNA and telomeric DNA substrates. Gandhi, L., Collins, K. Genes Dev. (1998) [Pubmed]
  13. A reverse transcriptase/maturase promotes splicing by binding at its own coding segment in a group II intron RNA. Wank, H., SanFilippo, J., Singh, R.N., Matsuura, M., Lambowitz, A.M. Mol. Cell (1999) [Pubmed]
  14. E. coli NusA protein binds in vitro to an RNA sequence immediately upstream of the boxA signal of bacteriophage lambda. Tsugawa, A., Kurihara, T., Zuber, M., Court, D.L., Nakamura, Y. EMBO J. (1985) [Pubmed]
  15. Binding and kinetic properties of HIV-1 reverse transcriptase markedly differ during initiation and elongation of reverse transcription. Lanchy, J.M., Ehresmann, C., Le Grice, S.F., Ehresmann, B., Marquet, R. EMBO J. (1996) [Pubmed]
  16. AIDS virus reverse transcriptase defined by high level expression in Escherichia coli. Larder, B., Purifoy, D., Powell, K., Darby, G. EMBO J. (1987) [Pubmed]
  17. Infectious potential of human immunodeficiency virus type 1 reverse transcriptase mutants with altered inhibitor sensitivity. Larder, B.A., Kemp, S.D., Purifoy, D.J. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  18. Cloning and screening with nanogram amounts of immunopurified mRNAs: cDNA cloning and chromosomal mapping of cystathionine beta-synthase and the beta subunit of propionyl-CoA carboxylase. Kraus, J.P., Williamson, C.L., Firgaira, F.A., Yang-Feng, T.L., Münke, M., Francke, U., Rosenberg, L.E. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  19. Reverse transcriptase activity innate to DNA polymerase I and DNA topoisomerase I proteins of Streptomyces telomere complex. Bao, K., Cohen, S.N. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  20. The formation of the 2',5'-phosphodiester linkage in the cDNA priming reaction by bacterial reverse transcriptase in a cell-free system. Shimamoto, T., Inouye, M., Inouye, S. J. Biol. Chem. (1995) [Pubmed]
  21. Insertion of synthetic copies of human globin genes into bacterial plasmids. Wilson, J.T., Wilson, L.B., deRiel, J.K., Villa-komaroff, L., Efstratiadis, A., Forget, B.G., Weissman, S.M. Nucleic Acids Res. (1978) [Pubmed]
  22. Expression of enzymatically active reverse transcriptase in Escherichia coli. Tanese, N., Roth, M., Goff, S.P. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  23. Specific binding of tryptophan transfer RNA to avian myeloblastosis virus RNA-dependent DNA polymerase (reverse transcriptase). Panet, A., Haseltine, W.A., Baltimore, D., Peters, G., Harada, F., Dahlberg, J.E. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  24. Protein kinase and its regulatory effect on reverse transcriptase activity of Rous sarcoma virus. Lee, S.G., Miceli, M.V., Jungmann, R.A., Hung, P.P. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
  25. The putative substrate recognition loop of Escherichia coli ribonuclease H is not essential for activity. Keck, J.L., Marqusee, S. J. Biol. Chem. (1996) [Pubmed]
  26. RNase D, a reported new activity associated with HIV-1 reverse transcriptase, displays the same cleavage specificity as Escherichia coli RNase III. Hostomsky, Z., Hudson, G.O., Rahmati, S., Hostomska, Z. Nucleic Acids Res. (1992) [Pubmed]
  27. Three-dimensional folding of the tRNA-like domain of Escherichia coli tmRNA. Zwieb, C., Guven, S.A., Wower, I.K., Wower, J. Biochemistry (2001) [Pubmed]
  28. A genetic approach for identifying critical residues in the fingers and palm subdomains of HIV-1 reverse transcriptase. Wrobel, J.A., Chao, S.F., Conrad, M.J., Merker, J.D., Swanstrom, R., Pielak, G.J., Hutchison, C.A. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  29. Reconstitution and properties of homologous and chimeric HIV-1.HIV-2 p66.p51 reverse transcriptase. Howard, K.J., Frank, K.B., Sim, I.S., Le Grice, S.F. J. Biol. Chem. (1991) [Pubmed]
 
WikiGenes - Universities