The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

FBN1  -  fibrillin 1

Homo sapiens

Synonyms: ACMICD, ECTOL1, FBN, Fibrillin-1, GPHYSD2, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of FBN1

  • Hence, vascular disease in MFS is thought to result when FBN1 mutations preclude elastic fibre maturation by disrupting microfibrillar assembly [1].
  • A nonsense mutation in the fibrillin-1 (FBN1) gene of a Marfan syndrome (MFS) patient induces in-frame exon skipping of FBN1 exon 51 [2].
  • A third family cosegregates mild mitral valve prolapse syndrome with a mutation in FBN1 that can be functionally distinguished from those associated with the classic MFS phenotype [3].
  • Examination of the possible role of biologically relevant genes around FBN1 in systemic sclerosis in the Choctaw population [4].
  • A significantly higher incidence of ectopia lentis was found in the patients with MFS with an FBN1 mutation vs those without (P=.04) [5].

Psychiatry related information on FBN1

  • Monotone counting performance was found to be correlated with digit span (WAIS-R-HK), information (WAIS-R-HK), comprehension (WAIS-R-HK), logical memory (immediate recall) (Weschler Memory Scale, WMS), and visual reproduction (WMS) [6].
  • Neuropsychological assessment included the WAIS and WMS subtests information, picture completion, similarities, digit span, logical memory, and paired associate learning [7].
  • The rapid progress seen in developmental dyslexia and WMS demonstrates the possibilities and difficulties inherent in researching such disorders, and the authors hope that similar progress will be made for congenital prosopagnosia and other disorders in the near future [8].
  • Although the WMS possesses acceptable psychometric reliability, the clinician must keep in mind that the MQ may change significantly over time for individual Ss [9].
  • Recent research correlates TOVA abnormalities with impaired WMS scores of early dementia [10].

High impact information on FBN1


Chemical compound and disease context of FBN1


Biological context of FBN1

  • We now describe ten novel mutations of FBN1 resulting in strikingly different phenotypes [19].
  • Sequencing of the FBN1 gene revealed a heterozygous C to T transition at nucleotide 8176 resulting in the substitution of a tryptophan for an arginine (R2726W), at a site immediately adjacent to a consensus sequence recognized by a cellular protease [20].
  • FBN1 intragenic marker haplotypes ruled out the possibility that the other allele played a significant role in modulating the phenotype in this family [21].
  • Demonstration of the recurrence of Marfan-like skeletal and cardiovascular manifestations due to germline mosaicism for an FBN1 mutation [22].
  • Previously, mutations in the fibrillin-1 gene on chromosome 15 (FBN1) have been reported to cause MFS [23].

Anatomical context of FBN1


Associations of FBN1 with chemical compounds


Physical interactions of FBN1


Regulatory relationships of FBN1


Other interactions of FBN1


Analytical, diagnostic and therapeutic context of FBN1


  1. Targetting of the gene encoding fibrillin-1 recapitulates the vascular aspect of Marfan syndrome. Pereira, L., Andrikopoulos, K., Tian, J., Lee, S.Y., Keene, D.R., Ono, R., Reinhardt, D.P., Sakai, L.Y., Biery, N.J., Bunton, T., Dietz, H.C., Ramirez, F. Nat. Genet. (1997) [Pubmed]
  2. A nonsense mutation in the fibrillin-1 gene of a Marfan syndrome patient induces NMD and disrupts an exonic splicing enhancer. Caputi, M., Kendzior, R.J., Beemon, K.L. Genes Dev. (2002) [Pubmed]
  3. Multiple molecular mechanisms underlying subdiagnostic variants of Marfan syndrome. Montgomery, R.A., Geraghty, M.T., Bull, E., Gelb, B.D., Johnson, M., McIntosh, I., Francomano, C.A., Dietz, H.C. Am. J. Hum. Genet. (1998) [Pubmed]
  4. Examination of the possible role of biologically relevant genes around FBN1 in systemic sclerosis in the Choctaw population. Tan, F.K., Tercero, G.M., Arnett, F.C., Wang, N., Chakraborty, R. Arthritis Rheum. (2003) [Pubmed]
  5. Genotype and phenotype analysis of 171 patients referred for molecular study of the fibrillin-1 gene FBN1 because of suspected Marfan syndrome. Loeys, B., Nuytinck, L., Delvaux, I., De Bie, S., De Paepe, A. Arch. Intern. Med. (2001) [Pubmed]
  6. Neuropsychological correlates of sustained attention in schizophrenia. Chen, E.Y., Lam, L.C., Chen, R.Y., Nguyen, D.G., Chan, C.K., Wilkins, A.J. Schizophr. Res. (1997) [Pubmed]
  7. Structural brain correlates of anterograde memory deficits in multiple sclerosis. Brainin, M., Goldenberg, G., Ahlers, C., Reisner, T., Neuhold, A., Deecke, L. J. Neurol. (1988) [Pubmed]
  8. Developmental disorders of vision. Galaburda, A.M., Duchaine, B.C. Neurologic clinics. (2003) [Pubmed]
  9. Test-retest reliability of the Wechsler Memory Scale, Form I. Ryan, J.J., Morris, J., Yaffa, S., Peterson, L. Journal of clinical psychology. (1981) [Pubmed]
  10. Delayed P300 Latency Correlates With Abnormal Test of Variables of Attention (TOVA) in Adults and Predicts Early Cognitive Decline in a Clinical Setting. Gordon, C.A., Mengucci, J., Blum, S.H., Meshkin, B., Downs, B.W., Blum, K., Braverman, E.R., Chen, T.J., Martinez-Pons, M., Arcuri, V., Varshavskiy, M. Advances in therapy. (2006) [Pubmed]
  11. Silent mutation induces exon skipping of fibrillin-1 gene in Marfan syndrome. Liu, W., Qian, C., Francke, U. Nat. Genet. (1997) [Pubmed]
  12. Mutation in fibrillin-1 and the Marfanoid-craniosynostosis (Shprintzen-Goldberg) syndrome. Sood, S., Eldadah, Z.A., Krause, W.L., McIntosh, I., Dietz, H.C. Nat. Genet. (1996) [Pubmed]
  13. Solution structure of a pair of calcium-binding epidermal growth factor-like domains: implications for the Marfan syndrome and other genetic disorders. Downing, A.K., Knott, V., Werner, J.M., Cardy, C.M., Campbell, I.D., Handford, P.A. Cell (1996) [Pubmed]
  14. An extra cysteine in one of the non-calcium-binding epidermal growth factor-like motifs of the FBN1 polypeptide is connected to a novel variant of Marfan syndrome. Ståhl-Hallengren, C., Ukkonen, T., Kainulainen, K., Kristofersson, U., Saxne, T., Tornqvist, K., Peltonen, L. J. Clin. Invest. (1994) [Pubmed]
  15. Molecular analysis of eight mutations in FBN1. Halliday, D., Hutchinson, S., Kettle, S., Firth, H., Wordsworth, P., Handford, P.A. Hum. Genet. (1999) [Pubmed]
  16. Cell adhesion to fibrillin-1 molecules and microfibrils is mediated by alpha 5 beta 1 and alpha v beta 3 integrins. Bax, D.V., Bernard, S.E., Lomas, A., Morgan, A., Humphries, J., Shuttleworth, C.A., Humphries, M.J., Kielty, C.M. J. Biol. Chem. (2003) [Pubmed]
  17. Recurrent FBN1 mutation (R62C) in a Chinese family with isolated ectopia lentis. Yu, R., Lai, Z., Zhou, W., Ti, D.D., Zhang, X.N. Am. J. Ophthalmol. (2006) [Pubmed]
  18. Modification of the structure and function of fibrillin-1 by homocysteine suggests a potential pathogenetic mechanism in homocystinuria. Hubmacher, D., Tiedemann, K., Bartels, R., Brinckmann, J., Vollbrandt, T., Bätge, B., Notbohm, H., Reinhardt, D.P. J. Biol. Chem. (2005) [Pubmed]
  19. Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome. Kainulainen, K., Karttunen, L., Puhakka, L., Sakai, L., Peltonen, L. Nat. Genet. (1994) [Pubmed]
  20. A mutation in FBN1 disrupts profibrillin processing and results in isolated skeletal features of the Marfan syndrome. Milewicz, D.M., Grossfield, J., Cao, S.N., Kielty, C., Covitz, W., Jewett, T. J. Clin. Invest. (1995) [Pubmed]
  21. A Gly1127Ser mutation in an EGF-like domain of the fibrillin-1 gene is a risk factor for ascending aortic aneurysm and dissection. Francke, U., Berg, M.A., Tynan, K., Brenn, T., Liu, W., Aoyama, T., Gasner, C., Miller, D.C., Furthmayr, H. Am. J. Hum. Genet. (1995) [Pubmed]
  22. Demonstration of the recurrence of Marfan-like skeletal and cardiovascular manifestations due to germline mosaicism for an FBN1 mutation. Collod-Béroud, G., Lackmy-Port-Lys, M., Jondeau, G., Mathieu, M., Maingourd, Y., Coulon, M., Guillotel, M., Junien, C., Boileau, C. Am. J. Hum. Genet. (1999) [Pubmed]
  23. Mutation screening of complete fibrillin-1 coding sequence: report of five new mutations, including two in 8-cysteine domains. Tynan, K., Comeau, K., Pearson, M., Wilgenbus, P., Levitt, D., Gasner, C., Berg, M.A., Miller, D.C., Francke, U. Hum. Mol. Genet. (1993) [Pubmed]
  24. Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. Judge, D.P., Biery, N.J., Keene, D.R., Geubtner, J., Myers, L., Huso, D.L., Sakai, L.Y., Dietz, H.C. J. Clin. Invest. (2004) [Pubmed]
  25. Differential allelic expression of a fibrillin gene (FBN1) in patients with Marfan syndrome. Hewett, D., Lynch, J., Child, A., Firth, H., Sykes, B. Am. J. Hum. Genet. (1994) [Pubmed]
  26. Clustering of fibrillin (FBN1) missense mutations in Marfan syndrome patients at cysteine residues in EGF-like domains. Dietz, H.C., Saraiva, J.M., Pyeritz, R.E., Cutting, G.R., Francomano, C.A. Hum. Mutat. (1992) [Pubmed]
  27. Fibrillin-1 interactions with heparin. Implications for microfibril and elastic fiber assembly. Cain, S.A., Baldock, C., Gallagher, J., Morgan, A., Bax, D.V., Weiss, A.S., Shuttleworth, C.A., Kielty, C.M. J. Biol. Chem. (2005) [Pubmed]
  28. Cysteine substitutions in epidermal growth factor-like domains of fibrillin-1: distinct effects on biochemical and clinical phenotypes. Schrijver, I., Liu, W., Brenn, T., Furthmayr, H., Francke, U. Am. J. Hum. Genet. (1999) [Pubmed]
  29. Interaction of tropoelastin with the amino-terminal domains of fibrillin-1 and fibrillin-2 suggests a role for the fibrillins in elastic fiber assembly. Trask, T.M., Trask, B.C., Ritty, T.M., Abrams, W.R., Rosenbloom, J., Mecham, R.P. J. Biol. Chem. (2000) [Pubmed]
  30. Protein interaction studies of MAGP-1 with tropoelastin and fibrillin-1. Jensen, S.A., Reinhardt, D.P., Gibson, M.A., Weiss, A.S. J. Biol. Chem. (2001) [Pubmed]
  31. Fibulin-5 interacts with fibrillin-1 molecules and microfibrils. Freeman, L.J., Lomas, A., Hodson, N., Sherratt, M.J., Mellody, K.T., Weiss, A.S., Shuttleworth, A., Kielty, C.M. Biochem. J. (2005) [Pubmed]
  32. Latent transforming growth factor beta-binding protein 1 interacts with fibrillin and is a microfibril-associated protein. Isogai, Z., Ono, R.N., Ushiro, S., Keene, D.R., Chen, Y., Mazzieri, R., Charbonneau, N.L., Reinhardt, D.P., Rifkin, D.B., Sakai, L.Y. J. Biol. Chem. (2003) [Pubmed]
  33. Versican interacts with fibrillin-1 and links extracellular microfibrils to other connective tissue networks. Isogai, Z., Aspberg, A., Keene, D.R., Ono, R.N., Reinhardt, D.P., Sakai, L.Y. J. Biol. Chem. (2002) [Pubmed]
  34. Targeting of bone morphogenetic protein growth factor complexes to fibrillin. Sengle, G., Charbonneau, N.L., Ono, R.N., Sasaki, T., Alvarez, J., Keene, D.R., Bächinger, H.P., Sakai, L.Y. J. Biol. Chem. (2008) [Pubmed]
  35. RGD-containing fibrillin-1 fragments upregulate matrix metalloproteinase expression in cell culture: a potential factor in the pathogenesis of the Marfan syndrome. Booms, P., Pregla, R., Ney, A., Barthel, F., Reinhardt, D.P., Pletschacher, A., Mundlos, S., Robinson, P.N. Hum. Genet. (2005) [Pubmed]
  36. Regulation of fibrillin carboxy-terminal furin processing by N-glycosylation, and association of amino- and carboxy-terminal sequences. Ashworth, J.L., Kelly, V., Rock, M.J., Shuttleworth, C.A., Kielty, C.M. J. Cell. Sci. (1999) [Pubmed]
  37. Role of transforming growth factor-beta1 and its latent form binding protein in pseudoexfoliation syndrome. Schlötzer-Schrehardt, U., Zenkel, M., Küchle, M., Sakai, L.Y., Naumann, G.O. Exp. Eye Res. (2001) [Pubmed]
  38. Fibrillin-2 (FBN2) mutations result in the Marfan-like disorder, congenital contractural arachnodactyly. Putnam, E.A., Zhang, H., Ramirez, F., Milewicz, D.M. Nat. Genet. (1995) [Pubmed]
  39. Structure and expression of fibrillin-2, a novel microfibrillar component preferentially located in elastic matrices. Zhang, H., Apfelroth, S.D., Hu, W., Davis, E.C., Sanguineti, C., Bonadio, J., Mecham, R.P., Ramirez, F. J. Cell Biol. (1994) [Pubmed]
  40. A kindred exhibiting cosegregation of an overlap connective tissue disorder and the chromosome 16 linked form of autosomal dominant polycystic kidney disease. Somlo, S., Rutecki, G., Giuffra, L.A., Reeders, S.T., Cugino, A., Whittier, F.C. J. Am. Soc. Nephrol. (1993) [Pubmed]
  41. Distribution of myocilin and extracellular matrix components in the juxtacanalicular tissue of human eyes. Ueda, J., Wentz-Hunter, K., Yue, B.Y. Invest. Ophthalmol. Vis. Sci. (2002) [Pubmed]
  42. Heat modulation of tropoelastin, fibrillin-1, and matrix metalloproteinase-12 in human skin in vivo. Chen, Z., Seo, J.Y., Kim, Y.K., Lee, S.R., Kim, K.H., Cho, K.H., Eun, H.C., Chung, J.H. J. Invest. Dermatol. (2005) [Pubmed]
  43. Fifteen novel FBN1 mutations causing Marfan syndrome detected by heteroduplex analysis of genomic amplicons. Nijbroek, G., Sood, S., McIntosh, I., Francomano, C.A., Bull, E., Pereira, L., Ramirez, F., Pyeritz, R.E., Dietz, H.C. Am. J. Hum. Genet. (1995) [Pubmed]
  44. Delineation of the Marfan phenotype associated with mutations in exons 23-32 of the FBN1 gene. Putnam, E.A., Cho, M., Zinn, A.B., Towbin, J.A., Byers, P.H., Milewicz, D.M. Am. J. Med. Genet. (1996) [Pubmed]
  45. Sensitivity of conformation sensitive gel electrophoresis in detecting mutations in Marfan syndrome and related conditions. Körkkö, J., Kaitila, I., Lönnqvist, L., Peltonen, L., Ala-Kokko, L. J. Med. Genet. (2002) [Pubmed]
  46. Ectopia lentis phenotypes and the FBN1 gene. Adès, L.C., Holman, K.J., Brett, M.S., Edwards, M.J., Bennetts, B. Am. J. Med. Genet. A (2004) [Pubmed]
  47. Familial thoracic aortic aneurysms and dissections: three families with early-onset ascending and descending aortic dissections in women. Tran-Fadulu, V., Chen, J.H., Lemuth, D., Neichoy, B.T., Yuan, J., Gomes, N., Sparks, E., Kramer, L.A., Guo, D., Pannu, H., Braverman, A.C., Shete, S., Milewicz, D.M. Am. J. Med. Genet. A (2006) [Pubmed]
WikiGenes - Universities