The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Tnr  -  tenascin R

Rattus norvegicus

Synonyms: Janusin, Neural recognition molecule J1-160/180, Restrictin, TN-R, Tenascin-R
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Tnr

  • Here, we have focused on the putative role of TN-R in chronic brain diseases involving increased neuronal excitability, as found in epilepsy [1].
 

High impact information on Tnr

  • We investigated the binding of the purified sodium channel and the extracellular domain of the beta2 subunit to tenascin-C and tenascin-R in vitro [2].
  • Interaction of voltage-gated sodium channels with the extracellular matrix molecules tenascin-C and tenascin-R [2].
  • Glutathione S-transferase-tagged fusion proteins containing various segments of tenascin-C and tenascin-R were purified, digested with thrombin to remove the epitope tag, immobilized on microtiter dishes, and tested for their ability to bind purified sodium channel or the epitope-tagged extracellular domain of beta2 subunits [2].
  • The C-type lectin domains of lecticans, a family of aggregating chondroitin sulfate proteoglycans, bind tenascin-R by protein-protein interactions independent of carbohydrate moiety [3].
  • Surprisingly, this interaction is mediated by a protein-protein interaction through the fibronectin type III domains 3-5 of tenascin-R, independent of any carbohydrates or sulfated amino acids [3].
 

Biological context of Tnr

 

Anatomical context of Tnr

 

Associations of Tnr with chemical compounds

 

Physical interactions of Tnr

 

Co-localisations of Tnr

  • In almost all of these sites, brevican immunoreactivity colocalized with that of tenascin-R, which was also substantially codistributed with versican, another member of the lectican family [11].
 

Regulatory relationships of Tnr

 

Other interactions of Tnr

  • Immunohistochemical evidence for the brevican-tenascin-R interaction: colocalization in perineuronal nets suggests a physiological role for the interaction in the adult rat brain [11].
  • Tenascin-R associates extracellularly with parvalbumin immunoreactive neurones but is synthesised by another neuronal population in the adult rat cerebral cortex [12].
  • Tenascin-C, tenascin-R, and tenascin/J1 were all expressed in the olfactory bulb and spinal cord during development, while tenascin/J1 was the only extensively expressed tenascin molecule in the adult [13].
 

Analytical, diagnostic and therapeutic context of Tnr

References

  1. Up-regulation of the extracellular matrix glycoprotein tenascin-R during axonal reorganization and astrogliosis in the adult rat hippocampus. Brenneke, F., Schachner, M., Elger, C.E., Lie, A.A. Epilepsy Res. (2004) [Pubmed]
  2. Interaction of voltage-gated sodium channels with the extracellular matrix molecules tenascin-C and tenascin-R. Srinivasan, J., Schachner, M., Catterall, W.A. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  3. The C-type lectin domains of lecticans, a family of aggregating chondroitin sulfate proteoglycans, bind tenascin-R by protein-protein interactions independent of carbohydrate moiety. Aspberg, A., Miura, R., Bourdoulous, S., Shimonaka, M., Heinegârd, D., Schachner, M., Ruoslahti, E., Yamaguchi, Y. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  4. Tenascin-R plays a role in neuroprotection via its distinct domains that coordinate to modulate the microglia function. Liao, H., Bu, W.Y., Wang, T.H., Ahmed, S., Xiao, Z.C. J. Biol. Chem. (2005) [Pubmed]
  5. Spatial and temporal regulation of tenascin-R glycosylation in the cerebellum. Woodworth, A., Fiete, D., Baenziger, J.U. J. Biol. Chem. (2002) [Pubmed]
  6. Chondroitin sulfates expressed on oligodendrocyte-derived tenascin-R are involved in neural cell recognition. Functional implications during CNS development and regeneration. Probstmeier, R., Stichel, C.C., Müller, H.W., Asou, H., Pesheva, P. J. Neurosci. Res. (2000) [Pubmed]
  7. Composition of perineuronal nets in the adult rat cerebellum and the cellular origin of their components. Carulli, D., Rhodes, K.E., Brown, D.J., Bonnert, T.P., Pollack, S.J., Oliver, K., Strata, P., Fawcett, J.W. J. Comp. Neurol. (2006) [Pubmed]
  8. Distinct effects of recombinant tenascin-R domains in neuronal cell functions and identification of the domain interacting with the neuronal recognition molecule F3/11. Xiao, Z.C., Taylor, J., Montag, D., Rougon, G., Schachner, M. Eur. J. Neurosci. (1996) [Pubmed]
  9. Changes in the expression of the extracellular matrix molecules tenascin-C and tenascin-R after 3-acetylpyridine-induced lesion of the olivocerebellar system of the adult rat. Wintergerst, E.S., Bartsch, U., Batini, C., Schachner, M. Eur. J. Neurosci. (1997) [Pubmed]
  10. Isoaspartate in chrondroitin sulfate proteoglycans of mammalian brain. David, C.L., Orpiszewski, J., Zhu, X.C., Reissner, K.J., Aswad, D.W. J. Biol. Chem. (1998) [Pubmed]
  11. Immunohistochemical evidence for the brevican-tenascin-R interaction: colocalization in perineuronal nets suggests a physiological role for the interaction in the adult rat brain. Hagihara, K., Miura, R., Kosaki, R., Berglund, E., Ranscht, B., Yamaguchi, Y. J. Comp. Neurol. (1999) [Pubmed]
  12. Tenascin-R associates extracellularly with parvalbumin immunoreactive neurones but is synthesised by another neuronal population in the adult rat cerebral cortex. Wintergerst, E.S., Rathjen, F.G., Schwaller, B., Eggli, P., Celio, M.R. J. Neurocytol. (2001) [Pubmed]
  13. Differential expression of tenascin-C, tenascin-R, tenascin/J1, and tenascin-X in spinal cord scar tissue and in the olfactory system. Deckner, M., Lindholm, T., Cullheim, S., Risling, M. Exp. Neurol. (2000) [Pubmed]
  14. Structural basis for interactions between tenascins and lectican C-type lectin domains: evidence for a crosslinking role for tenascins. Lundell, A., Olin, A.I., Mörgelin, M., al-Karadaghi, S., Aspberg, A., Logan, D.T. Structure (2004) [Pubmed]
  15. Tenascin-R is antiadhesive for activated microglia that induce downregulation of the protein after peripheral nerve injury: a new role in neuronal protection. Angelov, D.N., Walther, M., Streppel, M., Guntinas-Lichius, O., Neiss, W.F., Probstmeier, R., Pesheva, P. J. Neurosci. (1998) [Pubmed]
  16. Correlation between putative inhibitory molecules at the dorsal root entry zone and failure of dorsal root axonal regeneration. Zhang, Y., Tohyama, K., Winterbottom, J.K., Haque, N.S., Schachner, M., Lieberman, A.R., Anderson, P.N. Mol. Cell. Neurosci. (2001) [Pubmed]
  17. Expression of tenascin R and J1 mRNA in motoneurons after a traumatic lesion in the spinal cord. Lindholm, T., Cullheim, S., Carlstedt, T., Risling, M. Neuroreport (2001) [Pubmed]
  18. The two faces of perineuronal nets. Viggiano, D. Neuroreport (2000) [Pubmed]
 
WikiGenes - Universities