The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

PLCB4  -  phospholipase C, beta 4

Bos taurus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of PLCB4

  • Stimulation of phospholipase C-beta 2 by recombinant guanine-nucleotide-binding protein beta gamma dimers produced in a baculovirus/insect cell expression system. Requirement of gamma-subunit isoprenylation for stimulation of phospholipase C [1].
 

High impact information on PLCB4

  • Unlike the other beta-type isozymes, PLC-beta 4 contains the GX4GKS consensus sequence for the recognition of the phosphoryl group of nucleotides [2].
  • In contrast, beta gamma-subunit was a much less effective activator of bovine brain phospholipase C-beta than the turkey erythrocyte enzyme [3].
  • The beta gamma subunits of both G proteins activate PLC-beta 3, thereby stimulating Ins(1,4,5)P3-dependent Ca2+ release and smooth muscle contraction, whereas the alpha subunits inhibit adenylyl cyclase activity [4].
  • In the current study, we used selective PLC-beta and G protein antibodies to identify the PLC-beta isozyme activated by opioid receptors in intestinal smooth muscle and the G proteins to which the PLC-beta isozyme and adenylyl cyclase are coupled [4].
  • In neurons and transformed cell lines, opioid receptors are coupled to various signaling mechanisms involved in Ca2+ mobilization, including inhibition or activation of Ca2+ channels and phospholipase C-beta (PLC-beta), the enzyme responsible for generation of the Ca2+ mobilizing messenger inositol-1,4,5-trisphosphate [Ins(1,4,5)P3] [4].
 

Anatomical context of PLCB4

References

 
WikiGenes - Universities