The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

APOBEC1  -  apolipoprotein B mRNA editing enzyme,...

Homo sapiens

Synonyms: APOBEC-1, Apolipoprotein B mRNA-editing enzyme 1, BEDP, C->U-editing enzyme APOBEC-1, CDAR1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of APOBEC1

 

High impact information on APOBEC1

 

Chemical compound and disease context of APOBEC1

 

Biological context of APOBEC1

  • The APOBEC1 nuclear export signal is involved in the export of ACF and the edited apoB mRNA together, to the site of translation [7].
  • By contrast, APOBEC1 and APOBEC3 are later evolutionary arrivals with orthologs not found in pufferfish (although synteny with mammals is maintained in respect of the flanking loci) [14].
  • The conclusion that these new genes encode orphan C to U RNA-editing enzymes of the APOBEC family comes from similarity in amino acid sequence with APOBEC1, conserved intron/exon organization, tissue-specific expression, homodimerization, and zinc and RNA binding similar to APOBEC1 [2].
  • Another gene corresponds to the activation-induced deaminase (AID) gene, which is located adjacent to APOBEC1 on chromosome 12 [2].
  • Genomic clones encoding the human APOBEC1 gene and its 5' flanking region have been isolated and characterized [15].
 

Anatomical context of APOBEC1

 

Associations of APOBEC1 with chemical compounds

  • These findings shed light on why APOBEC1 alone cannot edit efficiently the cytidine 6666 under physiological conditions, the editing base being buried in the loop and not directly accessible [20].
  • In addition, APOBEC1 has a unique motif containing 2 phenylalanine residues and an insert of 4 amino acid residues across the active site motif [21].
  • Identification of APOBEC3DE as Another Antiretroviral Factor from the Human APOBEC Family [5].
  • Experimental over-expression of APOBEC-1 resulted in an increased proportion of apoB mRNAs edited at C6666, as well as editing of sites that would otherwise not be recognized (promiscuous editing) [11].
  • Apobec1 edits the ApoB mRNA by deaminating nucleotide C(6666), which results in a codon change from Glutamate to stop, and subsequent expression of a truncated protein [22].
 

Physical interactions of APOBEC1

 

Regulatory relationships of APOBEC1

 

Other interactions of APOBEC1

  • Viral RNA and low-level DNA produced in the presence of APOBEC3F or rat APOBEC1 occasionally displayed mutations, but the majority of clones were wild-type [28].
  • At position -1, APOBEC1 showed a marked preference for dT, AID for dA/dG and APOBEC3G a strong preference for dC [29].
  • Two-hybrid cloning identifies an RNA-binding protein, GRY-RBP, as a component of apobec-1 editosome [23].
  • Like its homolog APOBEC1, which requires at least one additional factor to efficiently edit APOB RNA, other proteins are likely to be required for the proper targeting of AID to the immunoglobulin loci [30].
  • We demonstrate that the APOBEC1-ACF holoenzyme mediates a multifunctional cycle [7].
 

Analytical, diagnostic and therapeutic context of APOBEC1

  • We purified a 65-kDa protein that functionally complements apobec-1 and obtained peptide sequence information which was used in molecular cloning experiments [31].
  • RNase protection and reverse-transcription PCR analysis demonstrated the presence of an exon 2-skipped form of apobec-1 mRNA that arises through use of an alternative splice acceptor [32].
  • To test this hypothesis, the subcellular distribution of hemagglutinin- (HA) tagged APOBEC-1 expressed in transiently transfected hepatoma cells was determined by indirect immunofluorescence microscopy [33].
  • Northern blot analysis indicates that apobec1 mRNA exists in two different sizes, a approximately 2.2-kilobase (kb) form in small intestine and a approximately 2.4-kb form in liver, spleen, kidney, lung, muscle, and heart [34].
  • Although initially promising, enthusiasm for apobec-1 gene therapy for hypercholesterolemia was blunted by the finding that uncontrolled transgenic expression of APOBEC-1 led to nonspecific editing of mRNAs and pathology [35].

References

  1. Cytidine deamination of retroviral DNA by diverse APOBEC proteins. Bishop, K.N., Holmes, R.K., Sheehy, A.M., Davidson, N.O., Cho, S.J., Malim, M.H. Curr. Biol. (2004) [Pubmed]
  2. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22. Jarmuz, A., Chester, A., Bayliss, J., Gisbourne, J., Dunham, I., Scott, J., Navaratnam, N. Genomics (2002) [Pubmed]
  3. C-->U editing of neurofibromatosis 1 mRNA occurs in tumors that express both the type II transcript and apobec-1, the catalytic subunit of the apolipoprotein B mRNA-editing enzyme. Mukhopadhyay, D., Anant, S., Lee, R.M., Kennedy, S., Viskochil, D., Davidson, N.O. Am. J. Hum. Genet. (2002) [Pubmed]
  4. Identification of Amino Acid Residues in APOBEC3G Required for Regulation by Human Immunodeficiency Virus Type 1 Vif and Virion Encapsidation. Huthoff, H., Malim, M.H. J. Virol. (2007) [Pubmed]
  5. Identification of APOBEC3DE as Another Antiretroviral Factor from the Human APOBEC Family. Dang, Y., Wang, X., Esselman, W.J., Zheng, Y.H. J. Virol. (2006) [Pubmed]
  6. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Sheehy, A.M., Gaddis, N.C., Malim, M.H. Nat. Med. (2003) [Pubmed]
  7. The apolipoprotein B mRNA editing complex performs a multifunctional cycle and suppresses nonsense-mediated decay. Chester, A., Somasekaram, A., Tzimina, M., Jarmuz, A., Gisbourne, J., O'Keefe, R., Scott, J., Navaratnam, N. EMBO J. (2003) [Pubmed]
  8. The structure of a yeast RNA-editing deaminase provides insight into the fold and function of activation-induced deaminase and APOBEC-1. Xie, K., Sowden, M.P., Dance, G.S., Torelli, A.T., Smith, H.C., Wedekind, J.E. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  9. HIV-1 Vif can directly inhibit apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G-mediated cytidine deamination by using a single amino acid interaction and without protein degradation. Santa-Marta, M., da Silva, F.A., Fonseca, A.M., Goncalves, J. J. Biol. Chem. (2005) [Pubmed]
  10. Transcriptional regulation of APOBEC3G, a cytidine deaminase that hypermutates human immunodeficiency virus. Rose, K.M., Marin, M., Kozak, S.L., Kabat, D. J. Biol. Chem. (2004) [Pubmed]
  11. Apolipoprotein B RNA sequence 3' of the mooring sequence and cellular sources of auxiliary factors determine the location and extent of promiscuous editing. Sowden, M.P., Eagleton, M.J., Smith, H.C. Nucleic Acids Res. (1998) [Pubmed]
  12. Natural resistance to HIV infection: The Vif-APOBEC interaction. Malim, M.H. C. R. Biol. (2006) [Pubmed]
  13. Ethanol increases apolipoprotein B mRNA editing in rat primary hepatocytes and McArdle cells. Van Mater, D., Sowden, M.P., Cianci, J., Sparks, J.D., Sparks, C.E., Ballatori, N., Smith, H.C. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
  14. Evolution of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases. Conticello, S.G., Thomas, C.J., Petersen-Mahrt, S.K., Neuberger, M.S. Mol. Biol. Evol. (2005) [Pubmed]
  15. Human apolipoprotein B RNA editing deaminase gene (APOBEC1). Fujino, T., Navaratnam, N., Scott, J. Genomics (1998) [Pubmed]
  16. A DnaJ protein, apobec-1-binding protein-2, modulates apolipoprotein B mRNA editing. Lau, P.P., Villanueva, H., Kobayashi, K., Nakamuta, M., Chang, B.H., Chan, L. J. Biol. Chem. (2001) [Pubmed]
  17. ApoB mRNA editing is mediated by a coordinated modulation of multiple apoB mRNA editing enzyme components. Chen, Z., Eggerman, T.L., Patterson, A.P. Am. J. Physiol. Gastrointest. Liver Physiol. (2007) [Pubmed]
  18. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Mangeat, B., Turelli, P., Caron, G., Friedli, M., Perrin, L., Trono, D. Nature (2003) [Pubmed]
  19. Molecular cloning of a human small intestinal apolipoprotein B mRNA editing protein. Hadjiagapiou, C., Giannoni, F., Funahashi, T., Skarosi, S.F., Davidson, N.O. Nucleic Acids Res. (1994) [Pubmed]
  20. NMR structure of the apoB mRNA stem-loop and its interaction with the C to U editing APOBEC1 complementary factor. Maris, C., Masse, J., Chester, A., Navaratnam, N., Allain, F.H. RNA (2005) [Pubmed]
  21. An overview of cytidine deaminases. Navaratnam, N., Sarwar, R. Int. J. Hematol. (2006) [Pubmed]
  22. The acidic domain of hnRNPQ (NSAP1) has structural similarity to Barstar and binds to Apobec1. Quaresma, A.J., Oyama, S., Barbosa, J.A., Kobarg, J. Biochem. Biophys. Res. Commun. (2006) [Pubmed]
  23. Two-hybrid cloning identifies an RNA-binding protein, GRY-RBP, as a component of apobec-1 editosome. Lau, P.P., Chang, B.H., Chan, L. Biochem. Biophys. Res. Commun. (2001) [Pubmed]
  24. Cloning of an Apobec-1-binding protein that also interacts with apolipoprotein B mRNA and evidence for its involvement in RNA editing. Lau, P.P., Zhu, H.J., Nakamuta, M., Chan, L. J. Biol. Chem. (1997) [Pubmed]
  25. Absence of APOBEC-1 mediated mRNA editing in human carcinomas. Greeve, J., Lellek, H., Apostel, F., Hundoegger, K., Barialai, A., Kirsten, R., Welker, S., Greten, H. Oncogene (1999) [Pubmed]
  26. ARCD-1, an apobec-1-related cytidine deaminase, exerts a dominant negative effect on C to U RNA editing. Anant, S., Mukhopadhyay, D., Sankaranand, V., Kennedy, S., Henderson, J.O., Davidson, N.O. Am. J. Physiol., Cell Physiol. (2001) [Pubmed]
  27. Identification of the yeast cytidine deaminase CDD1 as an orphan C-->U RNA editase. Dance, G.S., Beemiller, P., Yang, Y., Mater, D.V., Mian, I.S., Smith, H.C. Nucleic Acids Res. (2001) [Pubmed]
  28. APOBEC-mediated interference with hepadnavirus production. Rösler, C., Köck, J., Kann, M., Malim, M.H., Blum, H.E., Baumert, T.F., von Weizsäcker, F. Hepatology (2005) [Pubmed]
  29. Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo. Beale, R.C., Petersen-Mahrt, S.K., Watt, I.N., Harris, R.S., Rada, C., Neuberger, M.S. J. Mol. Biol. (2004) [Pubmed]
  30. MDM2 can interact with the C-terminus of AID but it is inessential for antibody diversification in DT40 B cells. MacDuff, D.A., Neuberger, M.S., Harris, R.S. Mol. Immunol. (2006) [Pubmed]
  31. Molecular cloning of apobec-1 complementation factor, a novel RNA-binding protein involved in the editing of apolipoprotein B mRNA. Mehta, A., Kinter, M.T., Sherman, N.E., Driscoll, D.M. Mol. Cell. Biol. (2000) [Pubmed]
  32. Characterization of the human apobec-1 gene: expression in gastrointestinal tissues determined by alternative splicing with production of a novel truncated peptide. Hirano, K., Min, J., Funahashi, T., Baunoch, D.A., Davidson, N.O. J. Lipid Res. (1997) [Pubmed]
  33. Multiple protein domains determine the cell type-specific nuclear distribution of the catalytic subunit required for apolipoprotein B mRNA editing. Yang, Y., Yang, Y., Smith, H.C. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  34. Alternative mRNA splicing and differential promoter utilization determine tissue-specific expression of the apolipoprotein B mRNA-editing protein (Apobec1) gene in mice. Structure and evolution of Apobec1 and related nucleoside/nucleotide deaminases. Nakamuta, M., Oka, K., Krushkal, J., Kobayashi, K., Yamamoto, M., Li, W.H., Chan, L. J. Biol. Chem. (1995) [Pubmed]
  35. Apolipoprotein B mRNA editing and the reduction in synthesis and secretion of the atherogenic risk factor, apolipoprotein B100 can be effectively targeted through TAT-mediated protein transduction. Yang, Y., Ballatori, N., Smith, H.C. Mol. Pharmacol. (2002) [Pubmed]
 
WikiGenes - Universities