The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

ARF1  -  ADP-ribosylation factor 1

Homo sapiens

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of ARF1

  • In infected HeLa cells, an ARF1-enhanced green fluorescent protein fusion redistributes from Golgi stacks to the perinuclear region, where poliovirus RNA replication occurs [1].
  • PLD activity in both intact cells and the ARF-restored response in cytosol-depleted cells is inhibited by pertussis toxin, indicating a requirement for Gi2/Gi3 protein [2].
  • Effect of Rho and ADP-ribosylation factor GTPases on phospholipase D activity in intact human adenocarcinoma A549 cells [3].
  • CONCLUSIONS: This study demonstrates: (a) a high frequency and specificity of INK4a/ARF methylation in malignant biliary disease compared with mere cholangitis; and (b) the capability to detect these alterations reliably in endoscopically obtained bile [4].
  • Arfaptin 1 inhibits ADP-ribosylation factor-dependent matrix metalloproteinase-9 secretion induced by phorbol ester in HT 1080 fibrosarcoma cells [5].
  • These results uncover a novel molecular mechanism by which ARF1 regulates breast cancer cell growth and invasion during cancer progression [6].

High impact information on ARF1


Chemical compound and disease context of ARF1

  • To identify the signaling pathway to ARF and Rho activation by fMLP, we used pertussis toxin and wortmannin to examine the requirement for heterotrimeric G proteins of the Gi family and for phosphoinositide 3-kinase, respectively [2].
  • The accumulation of ARFs on membranes correlates with active replication of poliovirus RNA in vitro, whereas ARF translocation to membranes does not occur in the presence of BFA [1].

Biological context of ARF1


Anatomical context of ARF1


Associations of ARF1 with chemical compounds


Physical interactions of ARF1

  • Arfaptin effects on guanine nucleotide binding by ARFs were minimal whether or not a purified ARF guanine nucleotide-exchange protein was present [22].
  • Using in vitro binding assay, we show that ARF1 and RalA directly interact with different sites of PLD1 [23].
  • Cytohesin-1 enhanced binding of 35S-labeled guanosine 5'-[gamma-thio]triphosphate [35S]GTP[gammaS] or [3H]GDP to ARF purified from bovine brain (i.e., it appeared to function as an ARF-GEP) [19].
  • Here, we identify ARHGAP10--a novel Rho GTPase-activating protein (Rho-GAP) that is recruited to Golgi membranes through binding to GTP-ARF1 [24].
  • In contrast, mu4 binds equally well to the GTP- and GDP-bound forms of ARF1 and is less dependent on switch I and switch II residues [25].

Regulatory relationships of ARF1


Other interactions of ARF1


Analytical, diagnostic and therapeutic context of ARF1

  • These findings were corroborated by experiments investigating co-immunoprecipitation of the wild type (WT) and N376D mutant of the 5-HT(2A) receptor with ARF1 or 6 or dominant negative ARF1/6 constructs co-expressed in COS7 cells [33].
  • Northern blot analysis revealed the expression of at least three different ARF messages in human placenta and adrenal carcinoma cells [10].
  • This finding suggests that ARF1 is not a regulator of specific coat proteins, but rather is a ubiquitous molecular switch that acts as a transducer of diverse signals influencing coat assembly [34].
  • Membrane contents of ARF were assessed by Western blotting with the anti-ARF monoclonal antibody 1D9 followed by densitometric evaluation [35].
  • Promoter methylation of INK4a/ARF as detected in bile-significance for the differential diagnosis in biliary disease [4].


  1. Poliovirus proteins induce membrane association of GTPase ADP-ribosylation factor. Belov, G.A., Fogg, M.H., Ehrenfeld, E. J. Virol. (2005) [Pubmed]
  2. ADP-ribosylation factor and Rho proteins mediate fMLP-dependent activation of phospholipase D in human neutrophils. Fensome, A., Whatmore, J., Morgan, C., Jones, D., Cockcroft, S. J. Biol. Chem. (1998) [Pubmed]
  3. Effect of Rho and ADP-ribosylation factor GTPases on phospholipase D activity in intact human adenocarcinoma A549 cells. Meacci, E., Vasta, V., Moorman, J.P., Bobak, D.A., Bruni, P., Moss, J., Vaughan, M. J. Biol. Chem. (1999) [Pubmed]
  4. Promoter methylation of INK4a/ARF as detected in bile-significance for the differential diagnosis in biliary disease. Klump, B., Hsieh, C.J., Dette, S., Holzmann, K., Kiebetalich, R., Jung, M., Sinn, U., Ortner, M., Porschen, R., Gregor, M. Clin. Cancer Res. (2003) [Pubmed]
  5. Arfaptin 1 inhibits ADP-ribosylation factor-dependent matrix metalloproteinase-9 secretion induced by phorbol ester in HT 1080 fibrosarcoma cells. Ho, W.T., Exton, J.H., Williger, B.T. FEBS Lett. (2003) [Pubmed]
  6. ADP-ribosylation factor 1 controls the activation of the phosphatidylinositol 3-kinase pathway to regulate epidermal growth factor-dependent growth and migration of breast cancer cells. Boulay, P.L., Cotton, M., Melançon, P., Claing, A. J. Biol. Chem. (2008) [Pubmed]
  7. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Honda, A., Nogami, M., Yokozeki, T., Yamazaki, M., Nakamura, H., Watanabe, H., Kawamoto, K., Nakayama, K., Morris, A.J., Frohman, M.A., Kanaho, Y. Cell (1999) [Pubmed]
  8. ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Brown, H.A., Gutowski, S., Moomaw, C.R., Slaughter, C., Sternweis, P.C. Cell (1993) [Pubmed]
  9. Stepwise assembly of functionally active transport vesicles. Ostermann, J., Orci, L., Tani, K., Amherdt, M., Ravazzola, M., Elazar, Z., Rothman, J.E. Cell (1993) [Pubmed]
  10. Human ADP-ribosylation factors. A functionally conserved family of GTP-binding proteins. Kahn, R.A., Kern, F.G., Clark, J., Gelmann, E.P., Rulka, C. J. Biol. Chem. (1991) [Pubmed]
  11. Examination of the role of ADP-ribosylation factor and phospholipase D activation in regulated exocytosis in chromaffin and PC12 cells. Glenn, D.E., Thomas, G.M., O'Sullivan, A.J., Burgoyne, R.D. J. Neurochem. (1998) [Pubmed]
  12. ADP-ribosylation factor 1-regulated phospholipase D activity is localized at the plasma membrane and intracellular organelles in HL60 cells. Whatmore, J., Morgan, C.P., Cunningham, E., Collison, K.S., Willison, K.R., Cockcroft, S. Biochem. J. (1996) [Pubmed]
  13. ADP ribosylation factor 1 mutants identify a phospholipase D effector region and reveal that phospholipase D participates in lysosomal secretion but is not sufficient for recruitment of coatomer I. Jones, D.H., Bax, B., Fensome, A., Cockcroft, S. Biochem. J. (1999) [Pubmed]
  14. GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. Dell'Angelica, E.C., Puertollano, R., Mullins, C., Aguilar, R.C., Vargas, J.D., Hartnell, L.M., Bonifacino, J.S. J. Cell Biol. (2000) [Pubmed]
  15. The role of ADP-ribosylation factor and phospholipase D in adaptor recruitment. West, M.A., Bright, N.A., Robinson, M.S. J. Cell Biol. (1997) [Pubmed]
  16. Ceramide inhibition of phospholipase D and its relationship to RhoA and ARF1 translocation in GTP gamma S-stimulated polymorphonuclear leukocytes. Mansfield, P.J., Carey, S.S., Hinkovska-Galcheva, V., Shayman, J.A., Boxer, L.A. Blood (2004) [Pubmed]
  17. Mechanism of ADP ribosylation factor-stimulated phosphatidylinositol 4,5-bisphosphate synthesis in HL60 cells. Skippen, A., Jones, D.H., Morgan, C.P., Li, M., Cockcroft, S. J. Biol. Chem. (2002) [Pubmed]
  18. Controlling small guanine-nucleotide-exchange factor function through cytoplasmic RNA intramers. Mayer, G., Blind, M., Nagel, W., Böhm, T., Knorr, T., Jackson, C.L., Kolanus, W., Famulok, M. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  19. Cytohesin-1, a cytosolic guanine nucleotide-exchange protein for ADP-ribosylation factor. Meacci, E., Tsai, S.C., Adamik, R., Moss, J., Vaughan, M. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  20. ARF and PITP restore GTP gamma S-stimulated protein secretion from cytosol-depleted HL60 cells by promoting PIP2 synthesis. Fensome, A., Cunningham, E., Prosser, S., Tan, S.K., Swigart, P., Thomas, G., Hsuan, J., Cockcroft, S. Curr. Biol. (1996) [Pubmed]
  21. Cell-permeable ceramides prevent the activation of phospholipase D by ADP-ribosylation factor and RhoA. Abousalham, A., Liossis, C., O'Brien, L., Brindley, D.N. J. Biol. Chem. (1997) [Pubmed]
  22. Effects of arfaptin 1 on guanine nucleotide-dependent activation of phospholipase D and cholera toxin by ADP-ribosylation factor. Tsai, S.C., Adamik, R., Hong, J.X., Moss, J., Vaughan, M., Kanoh, H., Exton, J.H. J. Biol. Chem. (1998) [Pubmed]
  23. Activation of phospholipase D1 by direct interaction with ADP-ribosylation factor 1 and RalA. Kim, J.H., Lee, S.D., Han, J.M., Lee, T.G., Kim, Y., Park, J.B., Lambeth, J.D., Suh, P.G., Ryu, S.H. FEBS Lett. (1998) [Pubmed]
  24. Golgi-localized GAP for Cdc42 functions downstream of ARF1 to control Arp2/3 complex and F-actin dynamics. Dubois, T., Paléotti, O., Mironov, A.A., Fraisier, V., Stradal, T.E., De Matteis, M.A., Franco, M., Chavrier, P. Nat. Cell Biol. (2005) [Pubmed]
  25. Functional and physical interactions of the adaptor protein complex AP-4 with ADP-ribosylation factors (ARFs). Boehm, M., Aguilar, R.C., Bonifacino, J.S. EMBO J. (2001) [Pubmed]
  26. Phospholipase D stimulates release of nascent secretory vesicles from the trans-Golgi network. Chen, Y.G., Siddhanta, A., Austin, C.D., Hammond, S.M., Sung, T.C., Frohman, M.A., Morris, A.J., Shields, D. J. Cell Biol. (1997) [Pubmed]
  27. Cloning and initial characterization of a human phospholipase D2 (hPLD2). ADP-ribosylation factor regulates hPLD2. Lopez, I., Arnold, R.S., Lambeth, J.D. J. Biol. Chem. (1998) [Pubmed]
  28. The guanine nucleotide exchange factor ARNO mediates the activation of ARF and phospholipase D by insulin. Li, H.S., Shome, K., Rojas, R., Rizzo, M.A., Vasudevan, C., Fluharty, E., Santy, L.C., Casanova, J.E., Romero, G. BMC Cell Biol. (2003) [Pubmed]
  29. ARNO3, a Sec7-domain guanine nucleotide exchange factor for ADP ribosylation factor 1, is involved in the control of Golgi structure and function. Franco, M., Boretto, J., Robineau, S., Monier, S., Goud, B., Chardin, P., Chavrier, P. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  30. Requirement of phosphatidylinositol-4,5-bisphosphate for HERC1-mediated guanine nucleotide release from ARF proteins. Garcia-Gonzalo, F.R., Bartrons, R., Ventura, F., Rosa, J.L. FEBS Lett. (2005) [Pubmed]
  31. Cardiac phospholipase D2 localizes to sarcolemmal membranes and is inhibited by alpha-actinin in an ADP-ribosylation factor-reversible manner. Park, J.B., Kim, J.H., Kim, Y., Ha, S.H., Yoo, J.S., Du, G., Frohman, M.A., Suh, P.G., Ryu, S.H. J. Biol. Chem. (2000) [Pubmed]
  32. Arfaptin 1, a putative cytosolic target protein of ADP-ribosylation factor, is recruited to Golgi membranes. Kanoh, H., Williger, B.T., Exton, J.H. J. Biol. Chem. (1997) [Pubmed]
  33. Role of the conserved NPxxY motif of the 5-HT(2A) receptor in determining selective interaction with isoforms of ADP-Ribosylation Factor (ARF). Johnson, M.S., Robertson, D.N., Holland, P.J., Lutz, E.M., Mitchell, R. Cell. Signal. (2006) [Pubmed]
  34. ADP-Ribosylation factor 1 (ARF1) regulates recruitment of the AP-3 adaptor complex to membranes. Ooi, C.E., Dell'Angelica, E.C., Bonifacino, J.S. J. Cell Biol. (1998) [Pubmed]
  35. ADP-ribosylation factor translocation correlates with potentiation of GTP gamma S-stimulated phospholipase D activity in membrane fractions of HL-60 cells. Houle, M.G., Kahn, R.A., Naccache, P.H., Bourgoin, S. J. Biol. Chem. (1995) [Pubmed]
WikiGenes - Universities