The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

MSX1  -  msh homeobox 1

Homo sapiens

Synonyms: ECTD3, HOX7, HYD1, Homeobox protein Hox-7, Homeobox protein MSX-1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of MSX1

 

Psychiatry related information on MSX1

 

High impact information on MSX1

 

Chemical compound and disease context of MSX1

  • Alanine substitution analysis and a peptide deletion strategy were used to determine the minimal element of HYD1 necessary for bioactivity in a prostate cancer cell line called PC3N [9].
 

Biological context of MSX1

 

Anatomical context of MSX1

  • Molecular basis of non-syndromic tooth agenesis: mutations of MSX1 and PAX9 reflect their role in patterning human dentition [14].
  • Since a missense mutation in the homeobox gene, MSX1, was previously linked to tooth agenesis in a single family lacking second premolars and third molars, we performed a mutational analysis of MSX1 by PCR [15].
  • For example, tarsiers are the only extant primates without deciduous incisors, and MSX1 is expressed exclusively in the incisor regions during the earliest stages of dental development [16].
  • In addition, histological analysis of Msx1-knockout mice, combined with a finding of Msx1 expression in mesenchyme of developing nail beds, revealed that not only was tooth development disrupted in these mice, but nail development was affected as well [12].
  • Secondly, the same factors (Wnt1 and Lmx1a/Msx1) appear to regulate midbrain dopaminergic and/or neuronal fate specification in the postmitotic progeny of these precursors by controlling the expression of midbrain dopaminergic-specific and/or general proneural factors at later stages of neural development [17].
 

Associations of MSX1 with chemical compounds

  • Previously, we found that the cause of autosomal dominant selective tooth agenesis in one family is a missense mutation resulting in an arginine-to-proline substitution in the homeodomain of MSX1 [18].
  • DETA-NONOate evoked a wave of expression changes (maximum at 4 h), with a remarkable downregulation of the transcription factors MSX1, RELB, and Egr-1 [19].
  • 3. Sequence analysis of candidate gene MSX1 revealed a novel recessive missense mutation resulting in substitution of alanine to threonine amino acid (p. A219T), located in the MSX1 homeodomain, which is important for DNA binding and protein-protein interaction [20].
  • Msx1 is present in thyrotropic cells and binds to a consensus site on the glycoprotein hormone alpha-subunit promoter [21].
  • Furthermore, the repression of Msx1 promoter by Msx3 could be relieved by treating transfected cells with trichostatin A, an inhibitor of HDAC(s) [22].
 

Physical interactions of MSX1

  • There were statistically significant data suggesting that MSX1 interacts with PAX9 [23].
  • In this study, both wild-type and mutant Msx2 were shown to specifically bind to a DNA sequence previously identified as a high-affinity binding site for the related homeodomain protein Msx1 [24].
 

Enzymatic interactions of MSX1

 

Regulatory relationships of MSX1

  • We conclude that MSX1 inhibits transcription of myoD and that myoD is a target for homeobox gene regulation [7].
  • The IC(50) of the HYD-1 peptide for blocking adhesion to fibronectin, laminin 1, laminin 5, and collagen IV was 6.9 microg, 5.7 microg, >10 microg, and 6.2 microg/well, respectively [26].
 

Other interactions of MSX1

  • Association of MSX1 and TGFB3 with nonsyndromic clefting in humans [27].
  • To date, the only genes associated with the non-syndromic form of tooth agenesis are MSX1 and PAX9, which encode transcription factors that play a critical role during tooth development [14].
  • We further investigated interactions between Msx1 and myocardin/serum response factor (SRF)/CArG-box motif (cis element for SRF) using coimmunoprecipitation, gel-shift, and chromatin immunoprecipitation assays [28].
  • Cleft lip and/or palate with hypodontia outside the cleft region was positively associated with both TGFB3 and MSX1, compared with noncleft controls [11].
  • Gene defect in hypodontia: exclusion of MSX1 and MSX2 as candidate genes [29].
 

Analytical, diagnostic and therapeutic context of MSX1

References

  1. MSX1 and TGFB3 contribute to clefting in South America. Vieira, A.R., Orioli, I.M., Castilla, E.E., Cooper, M.E., Marazita, M.L., Murray, J.C. J. Dent. Res. (2003) [Pubmed]
  2. Rescue of cleft palate in Msx1-deficient mice by transgenic Bmp4 reveals a network of BMP and Shh signaling in the regulation of mammalian palatogenesis. Zhang, Z., Song, Y., Zhao, X., Zhang, X., Fermin, C., Chen, Y. Development (2002) [Pubmed]
  3. Association between homeobox-containing gene MSX1 and the occurrence of limb deficiency. Hwang, S.J., Beaty, T.H., McIntosh, I., Hefferon, T., Panny, S.R. Am. J. Med. Genet. (1998) [Pubmed]
  4. Somatic mutations and altered expression of the candidate tumor suppressors CSNK1 epsilon, DLG1, and EDD/hHYD in mammary ductal carcinoma. Fuja, T.J., Lin, F., Osann, K.E., Bryant, P.J. Cancer Res. (2004) [Pubmed]
  5. Evaluation of two putative susceptibility loci for oral clefts in the Danish population. Mitchell, L.E., Murray, J.C., O'Brien, S., Christensen, K. Am. J. Epidemiol. (2001) [Pubmed]
  6. A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Vastardis, H., Karimbux, N., Guthua, S.W., Seidman, J.G., Seidman, C.E. Nat. Genet. (1996) [Pubmed]
  7. MSX1 inhibits myoD expression in fibroblast x 10T1/2 cell hybrids. Woloshin, P., Song, K., Degnin, C., Killary, A.M., Goldhamer, D.J., Sassoon, D., Thayer, M.J. Cell (1995) [Pubmed]
  8. PIAS1 confers DNA-binding specificity on the Msx1 homeoprotein. Lee, H., Quinn, J.C., Prasanth, K.V., Swiss, V.A., Economides, K.D., Camacho, M.M., Spector, D.L., Abate-Shen, C. Genes Dev. (2006) [Pubmed]
  9. The minimum element of a synthetic Peptide required to block prostate tumor cell migration. Sroka, T.C., Marik, J., Pennington, M.E., Lam, K.S., Cress, A.E. Cancer Biol. Ther. (2006) [Pubmed]
  10. A case-control study of nonsyndromic oral clefts in Maryland. Beaty, T.H., Wang, H., Hetmanski, J.B., Fan, Y.T., Zeiger, J.S., Liang, K.Y., Chiu, Y.F., Vanderkolk, C.A., Seifert, K.C., Wulfsberg, E.A., Raymond, G., Panny, S.R., McIntosh, I. Annals of epidemiology. (2001) [Pubmed]
  11. Genetic association studies of cleft lip and/or palate with hypodontia outside the cleft region. Slayton, R.L., Williams, L., Murray, J.C., Wheeler, J.J., Lidral, A.C., Nishimura, C.J. The Cleft palate-craniofacial journal : official publication of the American Cleft Palate-Craniofacial Association. (2003) [Pubmed]
  12. A nonsense mutation in MSX1 causes Witkop syndrome. Jumlongras, D., Bei, M., Stimson, J.M., Wang, W.F., DePalma, S.R., Seidman, C.E., Felbor, U., Maas, R., Seidman, J.G., Olsen, B.R. Am. J. Hum. Genet. (2001) [Pubmed]
  13. Evidence for a modifier of onset age in Huntington disease linked to the HD gene in 4p16. Djoussé, L., Knowlton, B., Hayden, M.R., Almqvist, E.W., Brinkman, R.R., Ross, C.A., Margolis, R.L., Rosenblatt, A., Durr, A., Dode, C., Morrison, P.J., Novelletto, A., Frontali, M., Trent, R.J., McCusker, E., Gómez-Tortosa, E., Mayo Cabrero, D., Jones, R., Zanko, A., Nance, M., Abramson, R.K., Suchowersky, O., Paulsen, J.S., Harrison, M.B., Yang, Q., Cupples, L.A., Mysore, J., Gusella, J.F., MacDonald, M.E., Myers, R.H. Neurogenetics (2004) [Pubmed]
  14. Molecular basis of non-syndromic tooth agenesis: mutations of MSX1 and PAX9 reflect their role in patterning human dentition. Mostowska, A., Kobielak, A., Trzeciak, W.H. Eur. J. Oral Sci. (2003) [Pubmed]
  15. Clinical, radiographic, and genetic evaluation of a novel form of autosomal-dominant oligodontia. Goldenberg, M., Das, P., Messersmith, M., Stockton, D.W., Patel, P.I., D'Souza, R.N. J. Dent. Res. (2000) [Pubmed]
  16. Molecular evolution of the primate developmental genes MSX1 and PAX9. Perry, G.H., Verrelli, B.C., Stone, A.C. Mol. Biol. Evol. (2006) [Pubmed]
  17. Genetic networks controlling the development of midbrain dopaminergic neurons. Prakash, N., Wurst, W. J. Physiol. (Lond.) (2006) [Pubmed]
  18. Haploinsufficiency of MSX1: a mechanism for selective tooth agenesis. Hu, G., Vastardis, H., Bendall, A.J., Wang, Z., Logan, M., Zhang, H., Nelson, C., Stein, S., Greenfield, N., Seidman, C.E., Seidman, J.G., Abate-Shen, C. Mol. Cell. Biol. (1998) [Pubmed]
  19. Nitric oxide donor induces temporal and dose-dependent reduction of gene expression in human endothelial cells. Braam, B., de Roos, R., Dijk, A., Boer, P., Post, J.A., Kemmeren, P.P., Holstege, F.C., Bluysen, H.A., Koomans, H.A. Am. J. Physiol. Heart Circ. Physiol. (2004) [Pubmed]
  20. A novel missense mutation in MSX1 underlies autosomal recessive oligodontia with associated dental anomalies in Pakistani families. Chishti, M.S., Muhammad, D., Haider, M., Ahmad, W. J. Hum. Genet. (2006) [Pubmed]
  21. Msx1 is present in thyrotropic cells and binds to a consensus site on the glycoprotein hormone alpha-subunit promoter. Sarapura, V.D., Strouth, H.L., Gordon, D.F., Wood, W.M., Ridgway, E.C. Mol. Endocrinol. (1997) [Pubmed]
  22. Msx3 protein recruits histone deacetylase to down-regulate the Msx1 promoter. Mehra-Chaudhary, R., Matsui, H., Raghow, R. Biochem. J. (2001) [Pubmed]
  23. MSX1, PAX9, and TGFA contribute to tooth agenesis in humans. Vieira, A.R., Meira, R., Modesto, A., Murray, J.C. J. Dent. Res. (2004) [Pubmed]
  24. DNA binding and transcriptional properties of wild-type and mutant forms of the homeodomain protein Msx2. Semenza, G.L., Wang, G.L., Kundu, R. Biochem. Biophys. Res. Commun. (1995) [Pubmed]
  25. MSX1 gene is deleted in Wolf-Hirschhorn syndrome patients with oligodontia. Nieminen, P., Kotilainen, J., Aalto, Y., Knuutila, S., Pirinen, S., Thesleff, I. J. Dent. Res. (2003) [Pubmed]
  26. Synthetic peptides inhibit adhesion of human tumor cells to extracellular matrix proteins. DeRoock, I.B., Pennington, M.E., Sroka, T.C., Lam, K.S., Bowden, G.T., Bair, E.L., Cress, A.E. Cancer Res. (2001) [Pubmed]
  27. Association of MSX1 and TGFB3 with nonsyndromic clefting in humans. Lidral, A.C., Romitti, P.A., Basart, A.M., Doetschman, T., Leysens, N.J., Daack-Hirsch, S., Semina, E.V., Johnson, L.R., Machida, J., Burds, A., Parnell, T.J., Rubenstein, J.L., Murray, J.C. Am. J. Hum. Genet. (1998) [Pubmed]
  28. Bone morphogenetic protein-induced MSX1 and MSX2 inhibit myocardin-dependent smooth muscle gene transcription. Hayashi, K., Nakamura, S., Nishida, W., Sobue, K. Mol. Cell. Biol. (2006) [Pubmed]
  29. Gene defect in hypodontia: exclusion of MSX1 and MSX2 as candidate genes. Nieminen, P., Arte, S., Pirinen, S., Peltonen, L., Thesleff, I. Hum. Genet. (1995) [Pubmed]
  30. Mapping the Wolf-Hirschhorn syndrome phenotype outside the currently accepted WHS critical region and defining a new critical region, WHSCR-2. Zollino, M., Lecce, R., Fischetto, R., Murdolo, M., Faravelli, F., Selicorni, A., Buttè, C., Memo, L., Capovilla, G., Neri, G. Am. J. Hum. Genet. (2003) [Pubmed]
  31. Characterization of the human HOX 7 cDNA and identification of polymorphic markers. Padanilam, B.J., Stadler, H.S., Mills, K.A., McLeod, L.B., Solursh, M., Lee, B., Ramirez, F., Buetow, K.H., Murray, J.C. Hum. Mol. Genet. (1992) [Pubmed]
  32. Studies on Pax9-Msx1 protein interactions. Ogawa, T., Kapadia, H., Wang, B., D'Souza, R.N. Arch. Oral Biol. (2005) [Pubmed]
 
WikiGenes - Universities