The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

TERF2IP  -  telomeric repeat binding factor 2,...

Homo sapiens

Synonyms: DRIP5, Dopamine receptor-interacting protein 5, PP8000, RAP1, RAP1 homolog, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of TERF2IP

  • Moreover, gastric carcinomas with high TRF1 expression may require a large quantity of hRap1 [1].
  • DOCK4 mutations are present in a subset of human cancer cell lines; a recurrent missense mutant identified in human prostate and ovarian cancers encodes a protein that is defective in Rap1 activation [2].
  • We show that, in LNCaP prostate cancer cells, elevation of intracellular cAMP can potentiate the ability of epidermal growth factor (EGF), interleukin 6, and serum to activate MAPK and that this potentiation depends on protein kinase A and Rap1 [3].
  • Activation of the Rap1 guanine nucleotide exchange gene, CalDAG-GEF I, in BXH-2 murine myeloid leukemia [4].
  • B-Raf/Rap1 signaling, but not c-Raf-1/Ras, induces the histidine decarboxylase promoter in Helicobacter pylori infection [5].
 

Psychiatry related information on TERF2IP

  • We evaluated the immunoreactivity of the regulatory and catalytic subunits of cAMP-dependent protein kinase (protein kinase A) and 1 of its substrates, Rap1, in platelets from untreated euthymic, manic, and depressed patients with bipolar disorder and healthy subjects [6].
  • However, it remains to be determined whether abnormalities in Rap1 are specifically related to affective disorders or may also be present in schizophrenia and obsessive compulsive disorder [7].
 

High impact information on TERF2IP

  • Previously, we showed that tyrosine phosphorylation of p130Cas (Cas) in a cytoskeletal complex is involved in force-dependent activation of the small GTPase Rap1 [8].
  • We propose that budding yeast preserved Rap1 at telomeres but lost the TRF component, possibly concomitant with a change in the telomeric repeat sequence [9].
  • Rap1 (Ras-proximity 1), a member of the Ras family of small guanine triphosphatases (GTPases), is activated by diverse extracellular stimuli [10].
  • Regulation of immune responses and hematopoiesis by the rap1 signal [10].
  • Furthermore, evidence is accumulating that Rap1 functions in the spatial and temporal control of cell polarity [11].
 

Biological context of TERF2IP

 

Anatomical context of TERF2IP

  • Analysis of rodent spermatocytes reveals Trf1 at mouse, TRF2 at rat, and mammalian Rap1 at meiotic telomeres of both rodents [15].
  • Therefore, PKD1 promotes integrin activation in T cells by regulating Rap1 activation and membrane translocation via interactions with the beta1 integrin subunit cytoplasmic domain [16].
  • A novel fluorescent probe for GTP-bound Rap1 revealed that this GTPase was transiently activated only on the PM of both fibroblasts and T cells [17].
  • These results lead us to propose that Rap1 promotes cell spreading by localizing a subset of Rac GEFs to sites of active lamellipodia extension [18].
  • Association of the Ras-antagonistic Rap1/Krev-1 proteins with the Golgi complex [19].
 

Associations of TERF2IP with chemical compounds

  • RAP1 binds to DNA via two Myb/homeodomain-like motifs, which are DNA-binding folds previously identified in transcription factors [20].
  • Protein kinase D1 and the beta 1 integrin cytoplasmic domain control beta 1 integrin function via regulation of Rap1 activation [16].
  • We demonstrate that the kinase Phg2, a putative Rap1 effector, colocalizes with Rap1-guanosine triphosphate at the leading edge and is required in an in vitro assay for myosin II phosphorylation, which disassembles myosin II and facilitates filamentous actin-mediated leading edge protrusion [21].
  • Indeed, the PKC activator phorbol 12-myristate 13-acetate induced Rap1 activation, whereas the PKC-inhibitor bisindolylmaleimide inhibited the second, but not the first, phase of Rap1 activation [22].
  • We demonstrate that the activation of isoproterenol of both Rap1 and Ras requires Src [23].
 

Physical interactions of TERF2IP

  • It involves a stretch of at least 25 amino acids at the C-terminus of hRap1 that interact with TRF2 [12].
  • Fission yeast Rap1 homolog is a telomere-specific silencing factor and interacts with Taz1p [24].
 

Other interactions of TERF2IP

  • Zinc finger protein overexpressed in colon carcinoma interacts with the telomeric protein hRap1 [12].
  • PARP1, however, most likely interacted with hRap1 through TRF2 [13].
  • In addition, overexpression of full-length and mutant hRap1 that lacked the BRCA1 C-terminal domain functioned as dominant negatives and extended telomeres [13].
  • We demonstrated by deletional analysis that Rad-50/Mre-11 and Ku86 were recruited to hRap1 independent of TRF2 [13].
  • Using mass spectrometry of proteins associated with the shelterin component Rap1, we identified an SMN1/PSO2 nuclease family member that is closely related to Artemis [25].
 

Analytical, diagnostic and therapeutic context of TERF2IP

  • Chromatin immunoprecipitation assays indicated that TRF1, TRF2, and hRap1 bound OriP in vivo [26].
  • Interestingly, the sequence analysis of a positive clone revealed a perfect match with a Rap1 homolog in S. pombe (spRap1), which showed a significant homology with scRap1p and hRap1p [24].
  • Recent studies (including gene-targeting analysis) have uncovered that the Rap1 signal is integrated crucially and unpredictably in the diverse aspects of comprehensive biological systems [10].
  • Combinatorial effect of T-cell receptor ligation and CD45 isoform expression on the signaling contribution of the small GTPases Ras and Rap1 [27].
  • Western blotting identified Rap1, a downstream target of the cAMP-binding proteins, exchange protein directly activated by cAMP/cAMP-guanine nucleotide exchange factors 1 and 2, in PBMC [28].

References

  1. Expression of MRE11 complex (MRE11, RAD50, NBS1) and hRap1 and its relation with telomere regulation, telomerase activity in human gastric carcinomas. Matsutani, N., Yokozaki, H., Tahara, E., Tahara, H., Kuniyasu, H., Kitadai, Y., Haruma, K., Chayama, K., Tahara, E., Yasui, W. Pathobiology (2001) [Pubmed]
  2. DOCK4, a GTPase activator, is disrupted during tumorigenesis. Yajnik, V., Paulding, C., Sordella, R., McClatchey, A.I., Saito, M., Wahrer, D.C., Reynolds, P., Bell, D.W., Lake, R., van den Heuvel, S., Settleman, J., Haber, D.A. Cell (2003) [Pubmed]
  3. Elevation of cyclic adenosine 3',5'-monophosphate potentiates activation of mitogen-activated protein kinase by growth factors in LNCaP prostate cancer cells. Chen, T., Cho, R.W., Stork, P.J., Weber, M.J. Cancer Res. (1999) [Pubmed]
  4. Activation of the Rap1 guanine nucleotide exchange gene, CalDAG-GEF I, in BXH-2 murine myeloid leukemia. Dupuy, A.J., Morgan, K., von Lintig, F.C., Shen, H., Acar, H., Hasz, D.E., Jenkins, N.A., Copeland, N.G., Boss, G.R., Largaespada, D.A. J. Biol. Chem. (2001) [Pubmed]
  5. B-Raf/Rap1 signaling, but not c-Raf-1/Ras, induces the histidine decarboxylase promoter in Helicobacter pylori infection. Wessler, S., Rapp, U.R., Wiedenmann, B., Meyer, T.F., Schöneberg, T., Höcker, M., Naumann, M. FASEB J. (2002) [Pubmed]
  6. Abnormalities of cyclic adenosine monophosphate signaling in platelets from untreated patients with bipolar disorder. Perez, J., Tardito, D., Mori, S., Racagni, G., Smeraldi, E., Zanardi, R. Arch. Gen. Psychiatry (1999) [Pubmed]
  7. The cAMP-dependent protein kinase substrate Rap1 in platelets from patients with obsessive compulsive disorder or schizophrenia. Tardito, D., Maina, G., Tura, G.B., Bogetto, F., Pioli, R., Ravizza, L., Racagni, G., Perez, J. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology. (2001) [Pubmed]
  8. Force Sensing by Mechanical Extension of the Src Family Kinase Substrate p130Cas. Sawada, Y., Tamada, M., Dubin-Thaler, B.J., Cherniavskaya, O., Sakai, R., Tanaka, S., Sheetz, M.P. Cell (2006) [Pubmed]
  9. Identification of human Rap1: implications for telomere evolution. Li, B., Oestreich, S., de Lange, T. Cell (2000) [Pubmed]
  10. Regulation of immune responses and hematopoiesis by the rap1 signal. Minato, N., Kometani, K., Hattori, M. Adv. Immunol. (2007) [Pubmed]
  11. Linking Rap to cell adhesion. Bos, J.L. Curr. Opin. Cell Biol. (2005) [Pubmed]
  12. Zinc finger protein overexpressed in colon carcinoma interacts with the telomeric protein hRap1. Antoine, K., Ferbus, D., Kolahgar, G., Prospéri, M.T., Goubin, G. J. Cell. Biochem. (2005) [Pubmed]
  13. The human Rap1 protein complex and modulation of telomere length. O'Connor, M.S., Safari, A., Liu, D., Qin, J., Songyang, Z. J. Biol. Chem. (2004) [Pubmed]
  14. Telomere binding of the Rap1 protein is required for meiosis in fission yeast. Chikashige, Y., Hiraoka, Y. Curr. Biol. (2001) [Pubmed]
  15. Mammalian meiotic telomeres: protein composition and redistribution in relation to nuclear pores. Scherthan, H., Jerratsch, M., Li, B., Smith, S., Hultén, M., Lock, T., de Lange, T. Mol. Biol. Cell (2000) [Pubmed]
  16. Protein kinase D1 and the beta 1 integrin cytoplasmic domain control beta 1 integrin function via regulation of Rap1 activation. Medeiros, R.B., Dickey, D.M., Chung, H., Quale, A.C., Nagarajan, L.R., Billadeau, D.D., Shimizu, Y. Immunity (2005) [Pubmed]
  17. Rap1 up-regulation and activation on plasma membrane regulates T cell adhesion. Bivona, T.G., Wiener, H.H., Ahearn, I.M., Silletti, J., Chiu, V.K., Philips, M.R. J. Cell Biol. (2004) [Pubmed]
  18. Rap1 promotes cell spreading by localizing Rac guanine nucleotide exchange factors. Arthur, W.T., Quilliam, L.A., Cooper, J.A. J. Cell Biol. (2004) [Pubmed]
  19. Association of the Ras-antagonistic Rap1/Krev-1 proteins with the Golgi complex. Béranger, F., Goud, B., Tavitian, A., de Gunzburg, J. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  20. Recognition of telomeric DNA. König, P., Rhodes, D. Trends Biochem. Sci. (1997) [Pubmed]
  21. Rap1 controls cell adhesion and cell motility through the regulation of myosin II. Jeon, T.J., Lee, D.J., Merlot, S., Weeks, G., Firtel, R.A. J. Cell Biol. (2007) [Pubmed]
  22. Sequential regulation of the small GTPase Rap1 in human platelets. Franke, B., van Triest, M., de Bruijn, K.M., van Willigen, G., Nieuwenhuis, H.K., Negrier, C., Akkerman, J.W., Bos, J.L. Mol. Cell. Biol. (2000) [Pubmed]
  23. Galpha and Gbeta gamma require distinct Src-dependent pathways to activate Rap1 and Ras. Schmitt, J.M., Stork, P.J. J. Biol. Chem. (2002) [Pubmed]
  24. Fission yeast Rap1 homolog is a telomere-specific silencing factor and interacts with Taz1p. Park, M.J., Jang, Y.K., Choi, E.S., Kim, H.S., Park, S.D. Mol. Cells (2002) [Pubmed]
  25. Apollo, an Artemis-related nuclease, interacts with TRF2 and protects human telomeres in S phase. van Overbeek, M., de Lange, T. Curr. Biol. (2006) [Pubmed]
  26. Telomere repeat binding factors TRF1, TRF2, and hRAP1 modulate replication of Epstein-Barr virus OriP. Deng, Z., Atanasiu, C., Burg, J.S., Broccoli, D., Lieberman, P.M. J. Virol. (2003) [Pubmed]
  27. Combinatorial effect of T-cell receptor ligation and CD45 isoform expression on the signaling contribution of the small GTPases Ras and Rap1. Czyzyk, J., Leitenberg, D., Taylor, T., Bottomly, K. Mol. Cell. Biol. (2000) [Pubmed]
  28. Adenosine 3',5'-cyclic monophosphate (cAMP)-dependent inhibition of IL-5 from human T lymphocytes is not mediated by the cAMP-dependent protein kinase A. Staples, K.J., Bergmann, M., Tomita, K., Houslay, M.D., McPhee, I., Barnes, P.J., Giembycz, M.A., Newton, R. J. Immunol. (2001) [Pubmed]
 
WikiGenes - Universities