The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

SFTPB  -  surfactant protein B

Homo sapiens

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of SFTPB

 

High impact information on SFTPB

  • Elucidation of the structure and function of the hydrophobic surfactant protein (SP-B) and the SP-B gene has provided critical insight into surfactant homeostasis and control of respiratory epithelial cell gene expression [6].
  • Analysis of the genetic controls governing the SP-B gene has led to the definition of DNA-protein interactions that determine respiratory epithelial cell gene expression in general [6].
  • After secretion, SP-B plays an essential role in determining the structure of tubular myelin, the stability and rapidity of spreading, and the recycling of surfactant phospholipids [6].
  • Thus, a complex including Bqt1 and Bqt2 is essential for connecting telomeres to the SPB [7].
  • This genome-wide search identified two proteins, Bqt1 and Bqt2, that connect telomeres to the spindle-pole body (SPB; the centrosome equivalent in fungi) [7].
 

Chemical compound and disease context of SFTPB

 

Biological context of SFTPB

 

Anatomical context of SFTPB

  • Immunohistochemical analysis detected CITED1 and SFTPB in 49/52 and 39/52 PTCs, respectively, but not in follicular thyroid carcinoma and normal thyroid tissue [17].
  • Expression of SP-B by respiratory epithelial cells is regulated by developmental and hormonal influences at the level of gene transcription [14].
  • Fluorescence immunocytochemistry using epitope-specific antisera showed colocalization of pro-SP-B with the endoplasmic reticulum resident protein BiP [15].
  • To determine whether the C allele SP-B variant is indeed glycosylated at Asn(129)-Gln-Thr131, we first generated stably transfected Chinese hamster ovary cell lines that expressed each version of SP-B, and developed specific SP-B polyclonal anti-peptide antibodies [8].
  • Surfactant protein B (SP-B) is a hydrophobic, 79 amino acid peptide that regulates the structure and function of surfactant phospholipid membranes in the airspaces of the lung [18].
 

Associations of SFTPB with chemical compounds

  • Interleukin 6 and interleukin 11, known to activate STAT3 synergistically, stimulated the SP-B promoter activity with retinoic acid, which is at least partially mediated through interactions between STAT3 and retinoid nuclear receptor enhanceosome proteins in pulmonary epithelial cells [19].
  • In pulse-chase studies, brefeldin A blocked all processing of 42-kDa pro-SP-B whereas similar studies using monensin blocked the final N-terminal processing event of 9 to 8 kDa SP-B [15].
  • TRH alone also increases TTF-1 and SP-B mRNA levels but to a lesser extent than Dex [20].
  • In addition, we also confirmed that both SP-B variants contain another N-linked glycosylation site, Asn311-Ser-Ser313 [8].
  • The N-terminal half of SP-B (residues 1-37), which includes the nonhelical N-terminal amino acids in addition to helices 1 and 2, promoted rapid liposome fusion whereas shorter peptides were significantly less effective [18].
 

Physical interactions of SFTPB

  • We also determined whether specific SP-B variants interact with RDS susceptibility or protective SP-A variants to enhance or reduce risk for RDS [21].
  • Elsewhere, a 6 kDa peptide covering the peptide chain from residues 4 to 52 was isolated and its inhibitory effect on the binding of lactotransferrin to both human PHA-activated lymphocytes and non-activated platelets was demonstrated [22].
 

Enzymatic interactions of SFTPB

  • Furthermore, addition of control SP-B can improve samples containing oxidized SP-C, but not vice versa [23].
 

Co-localisations of SFTPB

 

Regulatory relationships of SFTPB

  • In vivo cotransfection studies further indicated that BR22 could act with TTF-1 to synergistically activate the SP-B promoter in mammalian cells [16].
  • Overexpression of CREB, ATF-2 and c-Jun inhibited SP-B promoter activity in NCI-H441 cells [24].
  • ABCA3 was coexpressed with SP-B and proSP-C in type II epithelial cells [25].
  • To test the role of this bridge in SP-B function in vivo, a construct was generated in which cysteine residues 235 and 246 of the human SP-B proprotein were mutated to serine and cloned under the control of the 3.7-kilobase hSP-C promoter (hSP-B(C235S/C246S)) [26].
  • Stepwise logistic regression analysis, duplex PCR data evaluation with recursive partition machine algorithm and hierarchical cluster analysis identified SFTPB (upregulated) and TFF3 (downregulated) gene combination as most favorable for differential molecular diagnosis of PTC [27].
  • Using a well described model of type 2 cell differentiation, small interfering RNA knockdown of pepsinogen C inhibited production of mature SP-B, whereas overexpression of pepsinogen C increased SP-B production [28].
 

Other interactions of SFTPB

  • Importantly, RA stimulation of the hSP-B promoter depends on tissue-specific thyroid transcription factor (TTF-1) DNA-binding sites [14].
  • Markers in LTBP4 (p </= 0.05) and SFTPB (p = 0.005) were associated with 6-min walk test distance [29].
  • RESULTS: At baseline, high levels of anti-GM-CSF antibodies and increased SP-A and SP-B levels were seen in all patients, and LDH was raised in 83% [30].
  • No cDNA segment of SP-B, SP-C, or SP-D cDNA was amplified from isolated submucosal glands or superficial epithelial cells, whereas all were amplified from alveolar tissue [31].
  • RESULTS: Nitrofen severely decreased TTF-1, HNF-3beta and SP-B mRNA expression by H441 pneumocytes in culture [32].
 

Analytical, diagnostic and therapeutic context of SFTPB

References

  1. Analysis of 40 sporadic or familial neonatal and pediatric cases with severe unexplained respiratory distress: relationship to SFTPB. Tredano, M., Griese, M., de Blic, J., Lorant, T., Houdayer, C., Schumacher, S., Cartault, F., Capron, F., Boccon-Gibod, L., Lacaze-Masmonteil, T., Renolleau, S., Delaisi, B., Elion, J., Couderc, R., Bahuau, M. Am. J. Med. Genet. A (2003) [Pubmed]
  2. A mutation in the surfactant protein B gene responsible for fatal neonatal respiratory disease in multiple kindreds. Nogee, L.M., Garnier, G., Dietz, H.C., Singer, L., Murphy, A.M., deMello, D.E., Colten, H.R. J. Clin. Invest. (1994) [Pubmed]
  3. Alterations in SP-B and SP-C expression in neonatal lung disease. Nogee, L.M. Annu. Rev. Physiol. (2004) [Pubmed]
  4. Surfactant proteins and thyroid transcription factor-1 in pulmonary and breast carcinomas. Bejarano, P.A., Baughman, R.P., Biddinger, P.W., Miller, M.A., Fenoglio-Preiser, C., al-Kafaji, B., Di Lauro, R., Whitsett, J.A. Mod. Pathol. (1996) [Pubmed]
  5. Thyroid transcription factor-1 is the superior immunohistochemical marker for pulmonary adenocarcinomas and large cell carcinomas compared to surfactant proteins A and B. Kaufmann, O., Dietel, M. Histopathology (2000) [Pubmed]
  6. Human surfactant protein B: structure, function, regulation, and genetic disease. Whitsett, J.A., Nogee, L.M., Weaver, T.E., Horowitz, A.D. Physiol. Rev. (1995) [Pubmed]
  7. Meiotic proteins bqt1 and bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Chikashige, Y., Tsutsumi, C., Yamane, M., Okamasa, K., Haraguchi, T., Hiraoka, Y. Cell (2006) [Pubmed]
  8. Differences in N-linked glycosylation between human surfactant protein-B variants of the C or T allele at the single-nucleotide polymorphism at position 1580: implications for disease. Wang, G., Christensen, N.D., Wigdahl, B., Guttentag, S.H., Floros, J. Biochem. J. (2003) [Pubmed]
  9. Reversibility of lung inflammation caused by SP-B deficiency. Ikegami, M., Whitsett, J.A., Martis, P.C., Weaver, T.E. Am. J. Physiol. Lung Cell Mol. Physiol. (2005) [Pubmed]
  10. Mechanism of all trans-retinoic acid and glucocorticoid regulation of surfactant protein mRNA. George, T.N., Miakotina, O.L., Goss, K.L., Snyder, J.M. Am. J. Physiol. (1998) [Pubmed]
  11. Efficient Ex vivo stimulation of Mycobacterium tuberculosis-specific T cells by genetically detoxified Bordetella pertussis adenylate cyclase antigen toxoids. Wilkinson, K.A., Simsova, M., Schölvinck, E., Sebo, P., Leclerc, C., Vordermeier, H.M., Dickson, S.J., Brown, J.R., Davidson, R.N., Pasvol, G., Levin, M., Wilkinson, R.J. Infect. Immun. (2005) [Pubmed]
  12. Mycobacterium africanum Elicits an Attenuated T Cell Response to Early Secreted Antigenic Target, 6 kDa, in Patients with Tuberculosis and Their Household Contacts. de Jong, B.C., Hill, P.C., Brookes, R.H., Gagneux, S., Jeffries, D.J., Otu, J.K., Donkor, S.A., Fox, A., McAdam, K.P., Small, P.M., Adegbola, R.A. J. Infect. Dis. (2006) [Pubmed]
  13. Origin of the prevalent SFTPB indel g.1549C > GAA (121ins2) mutation causing surfactant protein B (SP-B) deficiency. Tredano, M., Cooper, D.N., Stuhrmann, M., Christodoulou, J., Chuzhanova, N.A., Roudot-Thoraval, F., Boëlle, P.Y., Elion, J., Jeanpierre, M., Feingold, J., Couderc, R., Bahuau, M. Am. J. Med. Genet. A (2006) [Pubmed]
  14. Retinoic acid stimulation of the human surfactant protein B promoter is thyroid transcription factor 1 site-dependent. Naltner, A., Ghaffari, M., Whitsett, J.A., Yan, C. J. Biol. Chem. (2000) [Pubmed]
  15. Intracellular localization of processing events in human surfactant protein B biosynthesis. Korimilli, A., Gonzales, L.W., Guttentag, S.H. J. Biol. Chem. (2000) [Pubmed]
  16. BR22, a novel protein, interacts with thyroid transcription factor-1 and activates the human surfactant protein B promoter. Yang, Y.S., Yang, M.C., Wang, B., Weissler, J.C. Am. J. Respir. Cell Mol. Biol. (2001) [Pubmed]
  17. Gene expression in papillary thyroid carcinoma reveals highly consistent profiles. Huang, Y., Prasad, M., Lemon, W.J., Hampel, H., Wright, F.A., Kornacker, K., LiVolsi, V., Frankel, W., Kloos, R.T., Eng, C., Pellegata, N.S., de la Chapelle, A. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  18. Mapping and analysis of the lytic and fusogenic domains of surfactant protein B. Ryan, M.A., Qi, X., Serrano, A.G., Ikegami, M., Perez-Gil, J., Johansson, J., Weaver, T.E. Biochemistry (2005) [Pubmed]
  19. Transcriptional stimulation of the surfactant protein B gene by STAT3 in respiratory epithelial cells. Yan, C., Naltner, A., Martin, M., Naltner, M., Fangman, J.M., Gurel, O. J. Biol. Chem. (2002) [Pubmed]
  20. Down-regulation of thyroid transcription factor-1 gene expression in fetal lung hypoplasia is restored by glucocorticoids. Losada, A., Tovar, J.A., Xia, H.M., Diez-Pardo, J.A., Santisteban, P. Endocrinology (2000) [Pubmed]
  21. Surfactant protein (SP) B associations and interactions with SP-A in white and black subjects with respiratory distress syndrome. Floros, J., Fan, R., Diangelo, S., Guo, X., Wert, J., Luo, J. Pediatrics international : official journal of the Japan Pediatric Society. (2001) [Pubmed]
  22. Study on the binding of lactotransferrin (lactoferrin) to human PHA-activated lymphocytes and non-activated platelets. Localisation and description of the receptor-binding site. Mazurier, J., Legrand, D., Leveugle, B., Rochard, E., Montreuil, J., Spik, G. Adv. Exp. Med. Biol. (1994) [Pubmed]
  23. Reactive oxygen species inactivation of surfactant involves structural and functional alterations to surfactant proteins SP-B and SP-C. Rodríguez-Capote, K., Manzanares, D., Haines, T., Possmayer, F. Biophys. J. (2006) [Pubmed]
  24. Identification of a novel DNA regulatory element in the rabbit surfactant protein B (SP-B) promoter that is a target for ATF/CREB and AP-1 transcription factors. Berhane, K., Boggaram, V. Gene (2001) [Pubmed]
  25. Expression of ABCA3 in Developing Lung and Other Tissues. Stahlman, M.T., Besnard, V., Wert, S.E., Weaver, T.E., Dingle, S., Xu, Y., von Zychlin, K., Olson, S.J., Whitsett, J.A. J. Histochem. Cytochem. (2007) [Pubmed]
  26. Ablation of a critical surfactant protein B intramolecular disulfide bond in transgenic mice. Beck, D.C., Na, C.L., Whitsett, J.A., Weaver, T.E. J. Biol. Chem. (2000) [Pubmed]
  27. Diagnostic usefulness of PCR profiling of the differentially expressed marker genes in thyroid papillary carcinomas. Hamada, A., Mankovskaya, S., Saenko, V., Rogounovitch, T., Mine, M., Namba, H., Nakashima, M., Demidchik, Y., Demidchik, E., Yamashita, S. Cancer Lett. (2005) [Pubmed]
  28. Pepsinogen C proteolytic processing of surfactant protein B. Gerson, K.D., Foster, C.D., Zhang, P., Zhang, Z., Rosenblatt, M.M., Guttentag, S.H. J. Biol. Chem. (2008) [Pubmed]
  29. Genetic association analysis of functional impairment in chronic obstructive pulmonary disease. Hersh, C.P., Demeo, D.L., Lazarus, R., Celedón, J.C., Raby, B.A., Benditt, J.O., Criner, G., Make, B., Martinez, F.J., Scanlon, P.D., Sciurba, F.C., Utz, J.P., Reilly, J.J., Silverman, E.K. Am. J. Respir. Crit. Care Med. (2006) [Pubmed]
  30. Relationship of anti-GM-CSF antibody concentration, surfactant protein A and B levels, and serum LDH to pulmonary parameters and response to GM-CSF therapy in patients with idiopathic alveolar proteinosis. Seymour, J.F., Doyle, I.R., Nakata, K., Presneill, J.J., Schoch, O.D., Hamano, E., Uchida, K., Fisher, R., Dunn, A.R. Thorax (2003) [Pubmed]
  31. Surfactant protein A2 gene expression by human airway submucosal gland cells. Saitoh, H., Okayama, H., Shimura, S., Fushimi, T., Masuda, T., Shirato, K. Am. J. Respir. Cell Mol. Biol. (1998) [Pubmed]
  32. Effects of nitrofen and vitamins A, C and E on maturation of cultured human H441 pneumocytes. Gonzalez-Reyes, S., Martinez, L., Martinez-Calonge, W., Fernandez-Dumont, V., Tovar, J.A. Biol. Neonate (2006) [Pubmed]
  33. Isolation of a cDNA clone encoding a high molecular weight precursor to a 6-kDa pulmonary surfactant-associated protein. Jacobs, K.A., Phelps, D.S., Steinbrink, R., Fisch, J., Kriz, R., Mitsock, L., Dougherty, J.P., Taeusch, H.W., Floros, J. J. Biol. Chem. (1987) [Pubmed]
  34. Protein-protein interaction of retinoic acid receptor alpha and thyroid transcription factor-1 in respiratory epithelial cells. Yan, C., Naltner, A., Conkright, J., Ghaffari, M. J. Biol. Chem. (2001) [Pubmed]
  35. Human surfactant polypeptide SP-B. Disulfide bridges, C-terminal end, and peptide analysis of the airway form. Johansson, J., Jörnvall, H., Curstedt, T. FEBS Lett. (1992) [Pubmed]
  36. Congenital alveolar proteinosis caused by a novel mutation of the surfactant protein B gene and misalignment of lung vessels in consanguineous kindred infants. Wallot, M., Wagenvoort, C., deMello, D., Müller, K.M., Floros, J., Roll, C. Eur. J. Pediatr. (1999) [Pubmed]
  37. Mapping the human pulmonary surfactant-associated protein B gene (SFTP3) to chromosome 2p12-->p11.2. Vamvakopoulos, N.C., Modi, W.S., Floros, J. Cytogenet. Cell Genet. (1995) [Pubmed]
 
WikiGenes - Universities