The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

SLC5A3  -  solute carrier family 5 (sodium/myo...

Homo sapiens

Synonyms: BCW2, Na(+)/myo-inositol cotransporter, SMIT, SMIT1, SMIT2, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of SLC5A3

  • The SLC5A3 gene may play a role in the pathogenesis of Down syndrome [1].
  • Two bacteriophage P1 clones containing the SLC5A3 gene gave a positive PCR product when screened with the 21q22.1 marker VN02, an expressed sequence tag (EST00541) [2].
  • The importance of compatible osmolytes is underscored by the necrotic injury of the renal medulla and subsequent renal failure that results from the inhibition of SMIT in vivo by administration of a specific inhibitor [3].
  • The APOE*2(Lys146-->Gln) allele behaves like a dominant trait in the expression of familial dysbetalipoproteinemia (FD) (Smit et al., J. Lipid Res. 1990; 31: 45-53) [4].
  • The analysis of almost complete sequences confirmed the early evolutionary divergence of the freshwater and marine species of Caulobacter reported previously [Stahl, D. A., Key, R., Flesher, B. & Smit, J. (1992). J Bacteriol 174, 2193-2198] [5].
 

High impact information on SLC5A3

  • Cellular accumulation of compatible osmolytes in the renal medulla is catalyzed by the sodium/myo-inositol cotransporter (SMIT), the sodium/chloride/betaine cotransporter, and aldose reductase (synthesis of sorbitol) [3].
  • Tonicity-responsive enhancers (TonE) play a key role in hypertonicity-induced transcriptional stimulation of SMIT, sodium/chloride/betaine cotransporter, and aldose reductase [3].
  • The affinity for myo-inositol of MDCK cells transfected with SMIT2 is slightly lower (K(m)= 334 microm) than that found in voltage-clamped Xenopus laevis oocytes expressing SMIT2 (K(m)= 120 microm) [6].
  • The SMIT2-MDCK cell line thus appears to be a promising model for studying SMIT2 biochemistry and regulation [6].
  • This apical localization of SMIT2 was confirmed by transport studies on purified rabbit renal brush border membrane vesicles (BBMVs) [6].
 

Biological context of SLC5A3

 

Anatomical context of SLC5A3

 

Associations of SLC5A3 with chemical compounds

  • These results suggest that lithium and valproate down-regulate SMIT mRNA in vivo in patients [10].
  • Treatment of cells with the pyridinyl imidazole SB 203580 (10 microM), a specific inhibitor of p38 MAP kinase, inhibited the hyperosmolarity-induced increase in BGT-1 and SMIT mRNA as well as betaine and myoinositol uptake by 45-70% [11].
  • Smit and coworkers proposed a model of a cholinergic tripartite synapse based on the identification of a glial-derived binding protein (BP) that is secreted into the synapse and binds free acetylcholine (ACh), thus reducing the levels of ACh available for stimulating the postsynapse [13].
  • myo-Inositol is a ubiquitous intracellular organic osmolyte and phosphoinositide precursor maintained at millimolar intracellular concentrations through the action of membrane-associated Na+-myo-inositol cotransporters (SMIT) [14].
  • TNF-alpha also increased ceramide levels, and C2-ceramide mimicked the effect of TNF-alpha on SMIT mRNA levels and myo-inositol accumulation in bovine aorta endothelial cells [15].
 

Other interactions of SLC5A3

  • Fine mapping of this gene was accomplished by identifying YAC clones that contain SLC5A3 and utilizing known STS markers for 21q22.1 and 21q22.2 sub-bands that map to the positive YAC clones [2].
 

Analytical, diagnostic and therapeutic context of SLC5A3

References

  1. The human osmoregulatory Na+/myo-inositol cotransporter gene (SLC5A3): molecular cloning and localization to chromosome 21. Berry, G.T., Mallee, J.J., Kwon, H.M., Rim, J.S., Mulla, W.R., Muenke, M., Spinner, N.B. Genomics (1995) [Pubmed]
  2. The 21q22.1 STS marker, VN02 (EST00541 cDNA), is part of the 3' sequence of the human Na+/myo-inositol cotransporter (SLC5A3) gene. Berry, G.T., Mallee, J.J., Blouin, J.L., Antonarakis, S.E. Cytogenet. Cell Genet. (1996) [Pubmed]
  3. Tonicity-responsive enhancer binding protein, a rel-like protein that stimulates transcription in response to hypertonicity. Miyakawa, H., Woo, S.K., Dahl, S.C., Handler, J.S., Kwon, H.M. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  4. Triglyceride-rich lipoproteins of subjects heterozygous for apolipoprotein E2(Lys146-->Gln) are inefficiently converted to cholesterol-rich lipoproteins. Mulder, M., van der Boom, H., de Knijff, P., Braam, C., van den Maagdenberg, A., Leuven, J.A., Havekes, L.M. Atherosclerosis (1994) [Pubmed]
  5. The phylogenetic relationships of Caulobacter, Asticcacaulis and Brevundimonas species and their taxonomic implications. Sly, L.I., Cox, T.L., Beckenham, T.B. Int. J. Syst. Bacteriol. (1999) [Pubmed]
  6. Expression of the sodium-myo-inositol cotransporter SMIT2 at the apical membrane of Madin-Darby canine kidney cells. Bissonnette, P., Coady, M.J., Lapointe, J.Y. J. Physiol. (Lond.) (2004) [Pubmed]
  7. The structural organization of the human Na+/myo-inositol cotransporter (SLC5A3) gene and characterization of the promoter. Mallee, J.J., Atta, M.G., Lorica, V., Rim, J.S., Kwon, H.M., Lucente, A.D., Wang, Y., Berry, G.T. Genomics (1997) [Pubmed]
  8. In vivo brain myo-inositol levels in children with Down syndrome. Berry, G.T., Wang, Z.J., Dreha, S.F., Finucane, B.M., Zimmerman, R.A. J. Pediatr. (1999) [Pubmed]
  9. Amino acid depletion activates TonEBP and sodium-coupled inositol transport. Franchi-Gazzola, R., Visigalli, R., Dall'Asta, V., Sala, R., Woo, S.K., Kwon, H.M., Gazzola, G.C., Bussolati, O. Am. J. Physiol., Cell Physiol. (2001) [Pubmed]
  10. Sodium-myo-inositol co-transporter (SMIT-1) mRNA is increased in neutrophils of patients with bipolar 1 disorder and down-regulated under treatment with mood stabilizers. Willmroth, F., Drieling, T., Lamla, U., Marcushen, M., Wark, H.J., van Calker, D. Int. J. Neuropsychopharmacol. (2007) [Pubmed]
  11. Osmolyte strategy in human monocytes and macrophages: involvement of p38MAPK in hyperosmotic induction of betaine and myoinositol transporters. Denkert, C., Warskulat, U., Hensel, F., Häussinger, D. Arch. Biochem. Biophys. (1998) [Pubmed]
  12. Diffuse brain injury induces local expression of Na+/myo-inositol cotransporter in the rat brain. Ueda, T., Iwata, A., Komatsu, H., Aihara, N., Yamada, K., Ugawa, S., Shimada, S. Brain Res. Mol. Brain Res. (2001) [Pubmed]
  13. Imbalance of glial-neuronal interaction in synapses: a possible mechanism of the pathophysiology of bipolar disorder. Mitterauer, B. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry. (2004) [Pubmed]
  14. Alternate splicing in human Na+-MI cotransporter gene yields differentially regulated transport isoforms. Porcellati, F., Hosaka, Y., Hlaing, T., Togawa, M., Larkin, D.D., Karihaloo, A., Stevens, M.J., Killen, P.D., Greene, D.A. Am. J. Physiol. (1999) [Pubmed]
  15. Effect of TNF-alpha on SMIT mRNA levels and myo-inositol accumulation in cultured endothelial cells. Yorek, M.A., Dunlap, J.A., Thomas, M.J., Cammarata, P.R., Zhou, C., Lowe, W.L. Am. J. Physiol. (1998) [Pubmed]
  16. Response of human cells to desiccation: comparison with hyperosmotic stress response. Huang, Z., Tunnacliffe, A. J. Physiol. (Lond.) (2004) [Pubmed]
  17. Inhibition of inositol uptake in astrocytes by antisense oligonucleotides delivered by pH-sensitive liposomes. Lubrich, B., van Calker, D., Peschka-Süss, R. Eur. J. Biochem. (2000) [Pubmed]
 
WikiGenes - Universities