The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

SNAP25  -  synaptosomal-associated protein, 25kDa

Homo sapiens

Synonyms: RIC-4, RIC4, SEC9, SNAP, SNAP-25, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of SNAP25


Psychiatry related information on SNAP25


High impact information on SNAP25

  • Otoferlin binds Ca(2+) and displays Ca(2+)-dependent interactions with the SNARE proteins syntaxin1 and SNAP25 [10].
  • Hybridization with the 9q34.3 probe detected multiple transcripts in SUP-T1 RNA and small amounts of larger transcripts in T cells lacking the t(7;9)(q34;q34.3) translocation [11].
  • Sequence analysis of DNA from the t(7;9)(q34;q34.3) translocation of SUP-T1 revealed that chromosome 9 DNA had recombined with DNA 5' to rearranged D-J regions in the beta T cell receptor gene of chromosome 7 [11].
  • DNA containing breakpoints of two different t(7;9) chromosomal translocations was cloned from the T lymphoblastic tumor cell lines SUP-T1 and SUP-T3 [11].
  • We now demonstrate that whereas syntaxin and SNAP-25 in target membranes are freely available for SNARE complex formation, availability of synaptobrevin on synaptic vesicles is very limited [12].

Chemical compound and disease context of SNAP25


Biological context of SNAP25

  • These results provide the first direct evidence that rafts regulate SNARE function and exocytosis and identify the central cysteine-rich region of SNAP25/23 as an important regulatory domain [18].
  • Synaptosome-associated protein of 25 kDa (SNAP25) is a plasma membrane Q (containing glutamate)-SNARE essential for Ca(2+)-dependent secretory vesicle-plasma membrane fusion in neuroendocrine cells [19].
  • Synaptic core complex of synaptobrevin, syntaxin, and SNAP25 forms high affinity alpha-SNAP binding site [20].
  • The small-interfering RNA-mediated down-regulation of SNAP25 exerted effects similar to those of BoNT E expression [19].
  • However, a substantial intracellular pool of SNAP25 is maintained by endocytosis [19].

Anatomical context of SNAP25

  • PC12 cells were engineered that express the light chain of botulinum neurotoxin; in these cells all of the SNAP25 was cleaved to a lower molecular weight form, and regulated exocytosis was essentially absent [18].
  • Our results indicate that SNAP25 has a second function as an endosomal Q-SNARE in trafficking from the sorting endosome to the recycling endosome and that BoNT E has effects linked to disruption of the endosome recycling pathway [19].
  • Our previous analyses showed that SNARE proteins (syntaxin 1A/SNAP25/VAMP1) are concentrated at both poles of hair cells, consistent with their involvement in membrane delivery at both locations [21].
  • Soluble N -ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), including synaptosome-associated proteins of 25 kDa (SNAP25), syntaxins, and vesicle-associated membrane proteins (VAMP), are essential for regulated exocytosis of synaptic vesicles in neurotransmission [22].
  • Because Ca(2+) channels in hair cells are poised to interact with synaptic proteins, we also co-expressed the Ca(V)1.3alpha(1) subunit with syntaxin, vesicle-associated membrane protein (VAMP), and synaptosome associated protein of 25 kDa (SNAP25) [23].

Associations of SNAP25 with chemical compounds

  • This strain is hemizygous for the SNAP25 gene and displays hyperactivity that responds to dextroamphetamine, but not to methylphenidate [24].
  • In contrast to its behavior in neurons, the distribution of SNAP-25 in MDCK cells remained unaltered by treatment with dibutyryl cAMP or forskolin, which, however, caused an increased growth of the primary cilia [25].
  • The amisyn coil domain prevents the SNAP-25 C-terminally mediated rescue of botulinum neurotoxin E inhibition of norepinephrine exocytosis in permeabilized PC12 cells to a greater extent than it prevents the regular exocytosis of these vesicles [26].
  • Immunofluorescent localizations reveal peripheral SNAP-25 expression on osteoblastic cells, particularly at intercellular contact sites, colocalizing with immunoreactive glutamate and the synaptic vesicle-specific protein, synapsin I [27].
  • RESULTS: In both haloperidol (p =.001) and placebo (p =.001) treatment conditions, SNAP-25 was elevated [5].

Physical interactions of SNAP25


Regulatory relationships of SNAP25

  • This phenotype was not rescued when syntaxin 1A was co-expressed with SNAP-25 [33].
  • SNAP-23 is the ubiquitously expressed homologue of the neuronal SNAP-25, which functions in synaptic vesicle fusion [25].
  • Here we demonstrate that SNAP-25 efficiently inhibits GAT-1 reuptake function in the presence of syntaxin 1A [34].
  • Furthermore, munc13 expressed with syntaxin1A and munc18 promoted redistribution of a cytosolic SNAP25 mutant to the membrane, a result indicative of syntaxin1A-SNAP25 SNARE pairing [35].
  • CONCLUSIONS: Super-selective cavernous sinus sampling with hypothalamic stimulating hormone administration can provide accurate localization of the responsible lesion in patients with ACTH-producing pituitary adenoma [36].

Other interactions of SNAP25

  • Assembly of a ternary complex by the predicted minimal coiled-coil-forming domains of syntaxin, SNAP-25, and synaptobrevin. A circular dichroism study [37].
  • Furthermore, expression of a cytosolic mutant syntaxin 1A did not interfere with SNAP-25 membrane interactions or palmitoylation in the neuronal cell line NG108-15 [33].
  • We studied the N-terminal coiled-coil domain of SNAP-23 (SNAP-23N), a non-neuronal homologue of SNAP-25, and its interaction with other coiled-coil domains [38].
  • Here, we have designed three peptides, which correspond to sequences located in the syntaxin-1A H3 domain, the C-terminal domain of SNAP-25, and a conserved central domain of synaptobrevin-2, that exhibit a high propensity to form a minimal trimeric coiled-coil [37].
  • Our findings continue to support SNAP25 in the susceptibility to ADHD [24].

Analytical, diagnostic and therapeutic context of SNAP25


  1. A role for SNAP-25 but not VAMPs in store-mediated Ca2+ entry in human platelets. Redondo, P.C., Harper, A.G., Salido, G.M., Pariente, J.A., Sage, S.O., Rosado, J.A. J. Physiol. (Lond.) (2004) [Pubmed]
  2. Expression of vesicular monoamine transporters, synaptosomal-associated protein 25 and syntaxin1: a signature of human small cell lung carcinoma. Graff, L., Castrop, F., Bauer, M., Höfler, H., Gratzl, M. Cancer Res. (2001) [Pubmed]
  3. Increased RNA levels of the 25 kDa synaptosomal associated protein in brain samples of adult patients with Down Syndrome. Greber-Platzer, S., Fleischmann, C., Nussbaumer, C., Cairns, N., Lubec, G. Neurosci. Lett. (2003) [Pubmed]
  4. Botulinum neurotoxin A activity is dependent upon the presence of specific gangliosides in neuroblastoma cells expressing synaptotagmin I. Yowler, B.C., Kensinger, R.D., Schengrund, C.L. J. Biol. Chem. (2002) [Pubmed]
  5. Elevated cerebrospinal fluid SNAP-25 in schizophrenia. Thompson, P.M., Kelley, M., Yao, J., Tsai, G., van Kammen, D.P. Biol. Psychiatry (2003) [Pubmed]
  6. Decreased levels of synaptosomal associated protein 25 in the brain of patients with Down syndrome and Alzheimer's disease. Greber, S., Lubec, G., Cairns, N., Fountoulakis, M. Electrophoresis (1999) [Pubmed]
  7. Altered levels of the synaptosomal associated protein SNAP-25 in hippocampus of subjects with mood disorders and schizophrenia. Fatemi, S.H., Earle, J.A., Stary, J.M., Lee, S., Sedgewick, J. Neuroreport (2001) [Pubmed]
  8. Relationship of self-concept to nutrient intake and eating patterns in young women. Witte, D.J., Skinner, J.D., Carruth, B.R. Journal of the American Dietetic Association. (1991) [Pubmed]
  9. Perceptions of the Jackson-Timberlake Super Bowl incident: role of sexism and erotophobia. Forbes, G.B., Jobe, R.L., White, K.B., Richardson, R.M. Psychological reports. (2005) [Pubmed]
  10. Otoferlin, defective in a human deafness form, is essential for exocytosis at the auditory ribbon synapse. Roux, I., Safieddine, S., Nouvian, R., Grati, M., Simmler, M.C., Bahloul, A., Perfettini, I., Le Gall, M., Rostaing, P., Hamard, G., Triller, A., Avan, P., Moser, T., Petit, C. Cell (2006) [Pubmed]
  11. Analysis of DNA surrounding the breakpoints of chromosomal translocations involving the beta T cell receptor gene in human lymphoblastic neoplasms. Reynolds, T.C., Smith, S.D., Sklar, J. Cell (1987) [Pubmed]
  12. Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion. Hu, K., Carroll, J., Fedorovich, S., Rickman, C., Sukhodub, A., Davletov, B. Nature (2002) [Pubmed]
  13. Circle of life of secretory vesicles in gastric enterochromaffin-like cells. Zanner, R., Gratzl, M., Prinz, C. Ann. N. Y. Acad. Sci. (2002) [Pubmed]
  14. Single amino-acid changes in HIV envelope affect viral tropism and receptor binding. Cordonnier, A., Montagnier, L., Emerman, M. Nature (1989) [Pubmed]
  15. Expression of phosphotyrosine and SNAP-25 immunoreactivity in grumose (foamy) spheroid bodies suggests axonal regeneration. Nagao, M., Kato, S., Oda, M., Hirai, S. Acta Neuropathol. (1998) [Pubmed]
  16. Changes in presynaptic proteins, SNAP-25 and synaptophysin, in the hippocampal CA1 area in ischemic gerbils. Ishimaru, H., Casamenti, F., Uéda, K., Maruyama, Y., Pepeu, G. Brain Res. (2001) [Pubmed]
  17. Treatment of fibromyalgia syndrome with Super Malic: a randomized, double blind, placebo controlled, crossover pilot study. Russell, I.J., Michalek, J.E., Flechas, J.D., Abraham, G.E. J. Rheumatol. (1995) [Pubmed]
  18. Lipid raft association of SNARE proteins regulates exocytosis in PC12 cells. Salaün, C., Gould, G.W., Chamberlain, L.H. J. Biol. Chem. (2005) [Pubmed]
  19. A Second SNARE Role for Exocytic SNAP25 in Endosome Fusion. Aikawa, Y., Lynch, K.L., Boswell, K.L., Martin, T.F. Mol. Biol. Cell (2006) [Pubmed]
  20. Synaptic core complex of synaptobrevin, syntaxin, and SNAP25 forms high affinity alpha-SNAP binding site. McMahon, H.T., Südhof, T.C. J. Biol. Chem. (1995) [Pubmed]
  21. Ocsyn, a novel syntaxin-interacting protein enriched in the subapical region of inner hair cells. Safieddine, S., Ly, C.D., Wang, Y.X., Wang, C.Y., Kachar, B., Petralia, R.S., Wenthold, R.J. Mol. Cell. Neurosci. (2002) [Pubmed]
  22. Identification of a novel SNAP25 interacting protein (SIP30). Lee, H.K., Safieddine, S., Petralia, R.S., Wenthold, R.J. J. Neurochem. (2002) [Pubmed]
  23. Functional interaction of auxiliary subunits and synaptic proteins with Ca(v)1.3 may impart hair cell Ca2+ current properties. Song, H., Nie, L., Rodriguez-Contreras, A., Sheng, Z.H., Yamoah, E.N. J. Neurophysiol. (2003) [Pubmed]
  24. The SNAP25 gene as a susceptibility gene contributing to attention-deficit hyperactivity disorder. Feng, Y., Crosbie, J., Wigg, K., Pathare, T., Ickowicz, A., Schachar, R., Tannock, R., Roberts, W., Malone, M., Swanson, J., Kennedy, J.L., Barr, C.L. Mol. Psychiatry (2005) [Pubmed]
  25. Targeting of SNAP-23 and SNAP-25 in polarized epithelial cells. Low, S.H., Roche, P.A., Anderson, H.A., van Ijzendoorn, S.C., Zhang, M., Mostov, K.E., Weimbs, T. J. Biol. Chem. (1998) [Pubmed]
  26. Amisyn, a novel syntaxin-binding protein that may regulate SNARE complex assembly. Scales, S.J., Hesser, B.A., Masuda, E.S., Scheller, R.H. J. Biol. Chem. (2002) [Pubmed]
  27. Evidence for targeted vesicular glutamate exocytosis in osteoblasts. Bhangu, P.S., Genever, P.G., Spencer, G.J., Grewal, T.S., Skerry, T.M. Bone (2001) [Pubmed]
  28. The heavy chain of conventional kinesin interacts with the SNARE proteins SNAP25 and SNAP23. Diefenbach, R.J., Diefenbach, E., Douglas, M.W., Cunningham, A.L. Biochemistry (2002) [Pubmed]
  29. Membrane localization and biological activity of SNAP-25 cysteine mutants in insulin-secreting cells. Gonelle-Gispert, C., Molinete, M., Halban, P.A., Sadoul, K. J. Cell. Sci. (2000) [Pubmed]
  30. Tomosyn-1 is involved in a post-docking event required for pancreatic beta-cell exocytosis. Cheviet, S., Bezzi, P., Ivarsson, R., Renström, E., Viertl, D., Kasas, S., Catsicas, S., Regazzi, R. J. Cell. Sci. (2006) [Pubmed]
  31. The N-ethylmaleimide-sensitive fusion protein and alpha-SNAP induce a conformational change in syntaxin. Hanson, P.I., Otto, H., Barton, N., Jahn, R. J. Biol. Chem. (1995) [Pubmed]
  32. Intracellular interaction between syntaxin and Munc 18-1 revealed by fluorescence resonance energy transfer. Yerrapureddy, A., Korte, T., Hollmann, S., Nordhoff, M., Ahnert-Hilger, G., Herrmann, A., Veit, M. Mol. Membr. Biol. (2005) [Pubmed]
  33. SNAP-25 traffics to the plasma membrane by a syntaxin-independent mechanism. Loranger, S.S., Linder, M.E. J. Biol. Chem. (2002) [Pubmed]
  34. SNAP-25/Syntaxin 1A Complex Functionally Modulates Neurotransmitter {gamma}-Aminobutyric Acid Reuptake. Fan, H.P., Fan, F.J., Bao, L., Pei, G. J. Biol. Chem. (2006) [Pubmed]
  35. Regulation of syntaxin1A-munc18 complex for SNARE pairing in HEK293 cells. Gladycheva, S.E., Ho, C.S., Lee, Y.Y., Stuenkel, E.L. J. Physiol. (Lond.) (2004) [Pubmed]
  36. Diagnostic value of super-selective bilateral cavernous sinus sampling with hypothalamic stimulating hormone loading in patients with ACTH-producing pituitary adenoma. Fujimura, M., Ikeda, H., Takahashi, A., Ezura, M., Yoshimoto, T., Tominaga, T. Neurol. Res. (2005) [Pubmed]
  37. Assembly of a ternary complex by the predicted minimal coiled-coil-forming domains of syntaxin, SNAP-25, and synaptobrevin. A circular dichroism study. Cánaves, J.M., Montal, M. J. Biol. Chem. (1998) [Pubmed]
  38. Homotetrameric structure of the SNAP-23 N-terminal coiled-coil domain. Freedman, S.J., Song, H.K., Xu, Y., Sun, Z.Y., Eck, M.J. J. Biol. Chem. (2003) [Pubmed]
  39. Cloning and sequence analysis of the human SNAP25 cDNA. Zhao, N., Hashida, H., Takahashi, N., Sakaki, Y. Gene (1994) [Pubmed]
  40. Insulin-responsive tissues contain the core complex protein SNAP-25 (synaptosomal-associated protein 25) A and B isoforms in addition to syntaxin 4 and synaptobrevins 1 and 2. Jagadish, M.N., Fernandez, C.S., Hewish, D.R., Macaulay, S.L., Gough, K.H., Grusovin, J., Verkuylen, A., Cosgrove, L., Alafaci, A., Frenkel, M.J., Ward, C.W. Biochem. J. (1996) [Pubmed]
  41. SNAP-25a and -25b isoforms are both expressed in insulin-secreting cells and can function in insulin secretion. Gonelle-Gispert, C., Halban, P.A., Niemann, H., Palmer, M., Catsicas, S., Sadoul, K. Biochem. J. (1999) [Pubmed]
WikiGenes - Universities