The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

SOAT1  -  sterol O-acyltransferase 1

Homo sapiens

Synonyms: ACACT, ACACT1, ACAT, ACAT-1, ACAT1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of SOAT1

 

Psychiatry related information on SOAT1

 

High impact information on SOAT1

  • In addition, we present a working model linking the presumed allosteric property of ACAT with cholesterol trafficking into and out of the endoplasmic reticulum [9].
  • The topics reviewed in this chapter include the pathophysiological roles of ACAT, the biochemistry and molecular biology of the ACAT protein and the ACAT gene, and the mode of regulation by sterol or nonsterol agents in mammalian cells [9].
  • Due to its presumed role in regulating cellular cholesterol homeostasis, and in various pathophysiological conditions, acyl-coenzyme A:cholesterol acyltransferase (ACAT) has attracted much attention [9].
  • When cholesterol-loaded macrophages are incubated in medium containing plasma, cholesterol moves from the cells to HDL and is then esterified by lecithin/cholesterol acyltransferase [10].
  • In human cells, sterol is esterified to a storage form by acyl-coenzyme A (CoA): cholesterol acyl transferase (ACAT) [11].
 

Chemical compound and disease context of SOAT1

 

Biological context of SOAT1

 

Anatomical context of SOAT1

  • However, it is not yet known whether 5-HT affects ACAT-1 expression in human monocyte-macrophages as the molecular mechanism of enhanced foam cell formation by 5-HT remains unclear [19].
  • 5-HT increased ACAT activity in a concentration-dependent manner after 7 days in primary monocyte culture [19].
  • To further elucidate the mechanism for ACAT-1 regulation in macrophages, we examined the effects of five cytokines including transforming growth factor-beta1 (TGF- beta1) on ACAT-1 expression in cultured human monocyte-macrophages [20].
  • We further show that the activation is not due to an increase in ACAT1 protein content, but is partly due to an increase in the cholesterol content in the endoplasmic reticulum where ACAT1 resides [21].
  • Additionally, enantiomeric cholesterol, which has the same biophysical properties as cholesterol in membranes, fails to activate ACAT1 [21].
 

Associations of SOAT1 with chemical compounds

 

Regulatory relationships of SOAT1

 

Other interactions of SOAT1

  • Immunoblot analyses showed that TGF-beta1 increased ACAT-1 protein expression by two- to threefold when added during differentiation of human monocytes into macrophages [20].
  • To study ACAT2 topology, we inserted two different antigenic tags (hemagglutinin, monoclonal antibody Mab1) at various hydrophilic regions flanking each of its predicted TMDs, and expressed the recombinant proteins in mutant Chinese hamster ovary cells lacking endogenous ACAT [27].
  • In adult intestines, most of the ACAT activity can be immunodepleted by anti-ACAT-2 [28].
  • In conclusion, inhibition of ACAT reversed LCAT deficiency and improved plasma HDL level in CRF rats [2].
  • AcylCoA:cholesterol acyltransferase (ACAT) and diacylglycerol acyltransferase (DGAT) activities measured on cell-free extracts appeared to be decreased also by phospholipid polar head group modification, whereas the overall phospholipid acyltransferase activity remained unchanged [29].
 

Analytical, diagnostic and therapeutic context of SOAT1

References

  1. A critical role for the histidine residues in the catalytic function of acyl-CoA:cholesterol acyltransferase catalysis: evidence for catalytic difference between ACAT1 and ACAT2. An, S., Cho, K.H., Lee, W.S., Lee, J.O., Paik, Y.K., Jeong, T.S. FEBS Lett. (2006) [Pubmed]
  2. ACAT inhibition reverses LCAT deficiency and improves plasma HDL in chronic renal failure. Vaziri, N.D., Liang, K. Am. J. Physiol. Renal Physiol. (2004) [Pubmed]
  3. Potential role of acyl-coenzyme A:cholesterol transferase (ACAT) Inhibitors as hypolipidemic and antiatherosclerosis drugs. Leon, C., Hill, J.S., Wasan, K.M. Pharm. Res. (2005) [Pubmed]
  4. Localization of acyl coenzyme A:cholesterol acyltransferase gene to human chromosome 1q25. Chang, C.C., Noll, W.W., Nutile-McMenemy, N., Lindsay, E.A., Baldini, A., Chang, W., Chang, T.Y. Somat. Cell Mol. Genet. (1994) [Pubmed]
  5. Genetic association of acyl-coenzyme A: cholesterol acyltransferase with cerebrospinal fluid cholesterol levels, brain amyloid load, and risk for Alzheimer's disease. Wollmer, M.A., Streffer, J.R., Tsolaki, M., Grimaldi, L.M., Lütjohann, D., Thal, D., von Bergmann, K., Nitsch, R.M., Hock, C., Papassotiropoulos, A. Mol. Psychiatry (2003) [Pubmed]
  6. Psychiatric emergencies in the general hospital. Fulop, G., Strain, J.J. General hospital psychiatry. (1986) [Pubmed]
  7. Alcohol intoxication, injuries, and dangerous behaviors--and the revolving emergency department door. Lowenstein, S.R., Weissberg, M.P., Terry, D. The Journal of trauma. (1990) [Pubmed]
  8. Stat testing and DRGs: a strategy for cost containment. Sazama, K. Pathologist. (1985) [Pubmed]
  9. Acyl-coenzyme A:cholesterol acyltransferase. Chang, T.Y., Chang, C.C., Cheng, D. Annu. Rev. Biochem. (1997) [Pubmed]
  10. Direct evidence that reverse cholesterol transport is mediated by high-density lipoprotein in rabbit. Miller, N.E., La Ville, A., Crook, D. Nature (1985) [Pubmed]
  11. Sterol esterification in yeast: a two-gene process. Yang, H., Bard, M., Bruner, D.A., Gleeson, A., Deckelbaum, R.J., Aljinovic, G., Pohl, T.M., Rothstein, R., Sturley, S.L. Science (1996) [Pubmed]
  12. The reactivity of desmosterol and other shellfish- and xanthomatosis-associated sterols in the macrophage sterol esterification reaction. Tabas, I., Feinmark, S.J., Beatini, N. J. Clin. Invest. (1989) [Pubmed]
  13. Cell toxicity induced by inhibition of acyl coenzyme A:cholesterol acyltransferase and accumulation of unesterified cholesterol. Warner, G.J., Stoudt, G., Bamberger, M., Johnson, W.J., Rothblat, G.H. J. Biol. Chem. (1995) [Pubmed]
  14. Beta-lactams as versatile synthetic intermediates for the preparation of heterocycles of biological interest. Alcaide, B., Almendros, P. Current medicinal chemistry. (2004) [Pubmed]
  15. Effect of liposome composition on the activity of detergent-solubilized acylcoenzyme A: cholesterol acyltransferase. Mathur, S.N., Spector, A.A. J. Lipid Res. (1982) [Pubmed]
  16. Human ACAT inhibitory effects of shikonin derivatives from Lithospermum erythrorhizon. An, S., Park, Y.D., Paik, Y.K., Jeong, T.S., Lee, W.S. Bioorg. Med. Chem. Lett. (2007) [Pubmed]
  17. Human Acyl-CoA: Cholesterol Acyltransferase Inhibitory Activities of Aliphatic Acid Amides from Zanthoxylum piperitum DC. Park, Y.D., Lee, W.S., An, S., Jeong, T.S. Biol. Pharm. Bull. (2007) [Pubmed]
  18. Quantitative analysis of the expression of ACAT genes in human tissues by real-time PCR. Smith, J.L., Rangaraj, K., Simpson, R., Maclean, D.J., Nathanson, L.K., Stuart, K.A., Scott, S.P., Ramm, G.A., de Jersey, J. J. Lipid Res. (2004) [Pubmed]
  19. Serotonin acts as an up-regulator of acyl-coenzyme A:cholesterol acyltransferase-1 in human monocyte-macrophages. Suguro, T., Watanabe, T., Kanome, T., Kodate, S., Hirano, T., Miyazaki, A., Adachi, M. Atherosclerosis (2006) [Pubmed]
  20. Up-regulation of acyl-coenzyme A:cholesterol acyltransferase-1 by transforming growth factor-beta1 during differentiation of human monocytes into macrophages. Hori, M., Miyazaki, A., Tamagawa, H., Satoh, M., Furukawa, K., Hakamata, H., Sasaki, Y., Horiuchi, S. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  21. Investigating the allosterism of acyl-CoA:cholesterol acyltransferase (ACAT) by using various sterols: in vitro and intact cell studies. Liu, J., Chang, C.C., Westover, E.J., Covey, D.F., Chang, T.Y. Biochem. J. (2005) [Pubmed]
  22. Importance of acyl-coenzyme A:cholesterol acyltransferase 1/2 dual inhibition for anti-atherosclerotic potency of pactimibe. Kitayama, K., Tanimoto, T., Koga, T., Terasaka, N., Fujioka, T., Inaba, T. Eur. J. Pharmacol. (2006) [Pubmed]
  23. Molecular mechanisms behind the dose-dependent differential activation of MAPK pathways induced by transforming growth factor-beta1 in hematopoietic cells. Kale, V.P., Vaidya, A.A. Stem Cells Dev. (2004) [Pubmed]
  24. Human acyl-CoA:cholesterol acyltransferase-1 in the endoplasmic reticulum contains seven transmembrane domains. Lin, S., Cheng, D., Liu, M.S., Chen, J., Chang, T.Y. J. Biol. Chem. (1999) [Pubmed]
  25. A review of the unique features of HDL apoproteins. Pownall, H.J., Morrisett, J.D., Sparrow, J.T., Smith, L.C., Shepherd, J., Jackson, R.L., Gotto, A.M. Lipids (1979) [Pubmed]
  26. Adiponectin down-regulates acyl-coenzyme A:cholesterol acyltransferase-1 in cultured human monocyte-derived macrophages. Furukawa, K., Hori, M., Ouchi, N., Kihara, S., Funahashi, T., Matsuzawa, Y., Miyazaki, A., Nakayama, H., Horiuchi, S. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  27. Human acyl-coenzyme A:cholesterol acyltransferase expressed in chinese hamster ovary cells: membrane topology and active site location. Lin, S., Lu, X., Chang, C.C., Chang, T.Y. Mol. Biol. Cell (2003) [Pubmed]
  28. Immunological quantitation and localization of ACAT-1 and ACAT-2 in human liver and small intestine. Chang, C.C., Sakashita, N., Ornvold, K., Lee, O., Chang, E.T., Dong, R., Lin, S., Lee, C.Y., Strom, S.C., Kashyap, R., Fung, J.J., Farese, R.V., Patoiseau, J.F., Delhon, A., Chang, T.Y. J. Biol. Chem. (2000) [Pubmed]
  29. Modification of phospholipid polar head group with monomethylethanolamine and dimethylethanolamine decreases cholesteryl ester and triacylglycerol synthesis in cultured human fibroblasts. Maziere, C., Auclair, M., Mora, L., Maziere, J.C. Lipids (1990) [Pubmed]
  30. A selective ACAT-1 inhibitor, K-604, suppresses fatty streak lesions in fat-fed hamsters without affecting plasma cholesterol levels. Ikenoya, M., Yoshinaka, Y., Kobayashi, H., Kawamine, K., Shibuya, K., Sato, F., Sawanobori, K., Watanabe, T., Miyazaki, A. Atherosclerosis (2007) [Pubmed]
  31. Molecular cloning and functional expression of human acyl-coenzyme A:cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells. Chang, C.C., Huh, H.Y., Cadigan, K.M., Chang, T.Y. J. Biol. Chem. (1993) [Pubmed]
  32. Interleukin-7 modulates extracellular matrix production and TGF-beta signaling in cultured human subconjunctival fibroblasts. Yamanaka, O., Saika, S., Ikeda, K., Miyazaki, K., Ohnishi, Y., Ooshima, A. Curr. Eye Res. (2006) [Pubmed]
 
WikiGenes - Universities