The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

TAL1  -  T-cell acute lymphocytic leukemia 1

Homo sapiens

Synonyms: BHLHA17, Class A basic helix-loop-helix protein 17, SCL, Stem cell protein, T-cell acute lymphocytic leukemia protein 1, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of TAL1


Psychiatry related information on TAL1


High impact information on TAL1


Chemical compound and disease context of TAL1


Biological context of TAL1


Anatomical context of TAL1


Associations of TAL1 with chemical compounds

  • P/CAF-mediated acetylation, which mapped to a lysine-rich motif in the loop region, increased TAL1 binding to DNA while selectively inhibiting its interaction with the transcriptional co-repressor mSin3A [1].
  • Finally, TSA had a synergistic effect with enforced TAL1 expression in stimulating MEL cells to differentiate, while constitutive expression of mSin3A inhibited MEL cell differentiation [4].
  • Therefore, S122 phosphorylation may provide a mechanism whereby the properties of TAL1 polypeptides can be modulated by extracellular stimuli [24].
  • Products of the TAL1 oncogene: basic helix-loop-helix proteins phosphorylated at serine residues [25].
  • Exogenous expression of the transcription factor Scl (Tal1) in WEHI-3B D+ myelomonocytic leukemia cells interferes with their capacity to respond to all-trans retinoic acid (ATRA) induced differentiation; combination of ATRA with LiCl, however, circumvents the inhibition of differentiation produced by Scl [26].

Physical interactions of TAL1

  • These studies show that the bHLH domain of TAL1 selectively interacts with the bHLH domains of E12 and E47, but not with the Id1 helix-loop-helix protein [3].
  • We found previously that TAL1 could interact with transcriptional co-activator and co-repressor complexes possessing histone acetyltransferase and deacetylase activities, respectively [1].
  • PU.1/Spi-1 binds to the human TAL-1 silencer to mediate its activity [27].

Enzymatic interactions of TAL1

  • Previously, we reported that the MTAP gene was deleted in over 30% of T-ALL patients at both diagnosis and relapse [28].

Regulatory relationships of TAL1

  • In addition, SATB1 bound EEGS chromatin and promoted Tal1/SCL EEGS-dependent repression [29].
  • SCL/TAL1 expression level regulates human hematopoietic stem cell self-renewal and engraftment [5].
  • Finally, we showed that the silencer is also active in TAL-1-negative myeloid HL60 cells that express PU.1 at high levels [27].
  • LMO2 has been shown to cause tumours when aberrantly expressed and to be able to heterodimerise with TAL1 to facilitate tumour development [30].
  • We showed that VEGF treatment of embryos caused an increase in the population of newly gastrulated mesodermal (NGM) cells that express the transcription factor TAL1 [31].

Other interactions of TAL1

  • A complex containing both RBTN1 and TAL1 also occurs in a T-cell acute leukemia cell line [21].
  • LMO2 was more frequently coexpressed with LYL1, predominantly in IM0/delta/gamma adult cases, than with TAL1 [32].
  • Taken together, the properties of TAL2 evaluated here broadly resemble those described previously for TAL1, and therefore support the idea that both proteins promote T-ALL by a common mechanism [33].
  • HEN1 was cloned by virtue of its homology to TAL1, a bHLH protein important for early hematopoiesis [34].
  • P/CAF-mediated acetylation regulates the function of the basic helix-loop-helix transcription factor TAL1/SCL [1].

Analytical, diagnostic and therapeutic context of TAL1


  1. P/CAF-mediated acetylation regulates the function of the basic helix-loop-helix transcription factor TAL1/SCL. Huang, S., Qiu, Y., Shi, Y., Xu, Z., Brandt, S.J. EMBO J. (2000) [Pubmed]
  2. Protein dimerization between Lmo2 (Rbtn2) and Tal1 alters thymocyte development and potentiates T cell tumorigenesis in transgenic mice. Larson, R.C., Lavenir, I., Larson, T.A., Baer, R., Warren, A.J., Wadman, I., Nottage, K., Rabbitts, T.H. EMBO J. (1996) [Pubmed]
  3. Formation of in vivo complexes between the TAL1 and E2A polypeptides of leukemic T cells. Hsu, H.L., Wadman, I., Baer, R. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  4. mSin3A regulates murine erythroleukemia cell differentiation through association with the TAL1 (or SCL) transcription factor. Huang, S., Brandt, S.J. Mol. Cell. Biol. (2000) [Pubmed]
  5. SCL/TAL1 expression level regulates human hematopoietic stem cell self-renewal and engraftment. Reynaud, D., Ravet, E., Titeux, M., Mazurier, F., Rénia, L., Dubart-Kupperschmitt, A., Roméo, P.H., Pflumio, F. Blood (2005) [Pubmed]
  6. Coordinate expression and developmental role of Id2 protein and TAL1/E2A heterodimer in erythroid progenitor differentiation. Condorelli, G., Vitelli, L., Valtieri, M., Marta, I., Montesoro, E., Lulli, V., Baer, R., Peschle, C. Blood (1995) [Pubmed]
  7. Stem cell strategies for Alzheimer's disease therapy. Sugaya, K., Alvarez, A., Marutle, A., Kwak, Y.D., Choumkina, E. Panminerva medica. (2006) [Pubmed]
  8. The value of the Claybury Selection Battery in predicting benefit from group psychotherapy. Pearson, M.J., Girling, A.J. The British journal of psychiatry : the journal of mental science. (1990) [Pubmed]
  9. Stem cell transplantation for Huntington's disease. Dunnett, S.B., Rosser, A.E. Exp. Neurol. (2007) [Pubmed]
  10. Psychological characteristics of a sample of male street prostitutes. Simon, P.M., Morse, E.V., Osofsky, H.J., Balson, P.M., Gaumer, H.R. Archives of sexual behavior. (1992) [Pubmed]
  11. Chromosomal translocations in lymphoid malignancies reveal novel proto-oncogenes. Korsmeyer, S.J. Annu. Rev. Immunol. (1992) [Pubmed]
  12. Stem-cell transplantation for myelofibrosis. Deeg, H.J., Appelbaum, F.R. N. Engl. J. Med. (2001) [Pubmed]
  13. Stem cell patterning and fate in human epidermis. Jones, P.H., Harper, S., Watt, F.M. Cell (1995) [Pubmed]
  14. Stem-cell giveaway proposed as confusion reigns over cell count. Knight, J. Nature (2001) [Pubmed]
  15. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Shivdasani, R.A., Mayer, E.L., Orkin, S.H. Nature (1995) [Pubmed]
  16. TAL-1 protein expression in vascular lesions. Chetty, R., Dada, M.A., Boshoff, C.H., Comley, M.A., Biddolph, S.C., Schneider, J.W., Mason, D.Y., Pulford, K.A., Gatter, K.C. J. Pathol. (1997) [Pubmed]
  17. Stem cell transplantation for patients with Fanconi anemia with low-dose cyclophosphamide and antithymocyte globulins without the use of radiation therapy. Ayas, M., Al-Jefri, A., Al-Mahr, M., Rifai, S., Al-Seraihi, A., Tbakhi, A., Mustafa, M., Khairy, A., Moussa, E., Iqbal, A., Shalaby, L., El-Solh, H. Bone Marrow Transplant. (2005) [Pubmed]
  18. Stem cell genes in androgen-independent prostate cancer. Bui, M., Reiter, R.E. Cancer Metastasis Rev. (1998) [Pubmed]
  19. Case report: Invasive aspergillosis successfully treated with voriconazole without recurrence during subsequent bone marrow transplantation. Chow, E., Moore, T., Nielsen, K. Pediatr. Infect. Dis. J. (2003) [Pubmed]
  20. Stem cell mobilization in resistant or relapsed lymphoma: superior yield of progenitor cells following a salvage regimen comprising ifosphamide, etoposide and epirubicin compared to intermediate-dose cyclophosphamide. McQuaker, I.G., Haynes, A.P., Stainer, C., Anderson, S., Russell, N.H. Br. J. Haematol. (1997) [Pubmed]
  21. The LIM protein RBTN2 and the basic helix-loop-helix protein TAL1 are present in a complex in erythroid cells. Valge-Archer, V.E., Osada, H., Warren, A.J., Forster, A., Li, J., Baer, R., Rabbitts, T.H. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  22. Transcriptional activity of TAL1 in T cell acute lymphoblastic leukemia (T-ALL) requires RBTN1 or -2 and induces TALLA1, a highly specific tumor marker of T-ALL. Ono, Y., Fukuhara, N., Yoshie, O. J. Biol. Chem. (1997) [Pubmed]
  23. Expression of the TAL1 proto-oncogene in cultured endothelial cells and blood vessels of the spleen. Hwang, L.Y., Siegelman, M., Davis, L., Oppenheimer-Marks, N., Baer, R. Oncogene (1993) [Pubmed]
  24. Phosphorylation of the TAL1 oncoprotein by the extracellular-signal-regulated protein kinase ERK1. Cheng, J.T., Cobb, M.H., Baer, R. Mol. Cell. Biol. (1993) [Pubmed]
  25. Products of the TAL1 oncogene: basic helix-loop-helix proteins phosphorylated at serine residues. Cheng, J.T., Hsu, H.L., Hwang, L.Y., Baer, R. Oncogene (1993) [Pubmed]
  26. Analysis of the relationship between Scl transcription factor complex protein expression patterns and the effects of LiCl on ATRA-induced differentiation in blast cells from patients with acute myeloid leukemia. Rice, A.M., Holtz, K.M., Karp, J., Rollins, S., Sartorelli, A.C. Leuk. Res. (2004) [Pubmed]
  27. PU.1/Spi-1 binds to the human TAL-1 silencer to mediate its activity. Le Clech, M., Chalhoub, E., Dohet, C., Roure, V., Fichelson, S., Moreau-Gachelin, F., Mathieu, D. J. Mol. Biol. (2006) [Pubmed]
  28. Use of alanosine as a methylthioadenosine phosphorylase-selective therapy for T-cell acute lymphoblastic leukemia in vitro. Batova, A., Diccianni, M.B., Omura-Minamisawa, M., Yu, J., Carrera, C.J., Bridgeman, L.J., Kung, F.H., Pullen, J., Amylon, M.D., Yu, A.L. Cancer Res. (1999) [Pubmed]
  29. Tal1/SCL binding to pericentromeric DNA represses transcription. Wen, J., Huang, S., Pack, S.D., Yu, X., Brandt, S.J., Noguchi, C.T. J. Biol. Chem. (2005) [Pubmed]
  30. Chromosomal translocations and leukaemia: a role for LMO2 in T cell acute leukaemia, in transcription and in erythropoiesis. Rabbitts, T.H., Axelson, H., Forster, A., Grutz, G., Lavenir, I., Larson, R., Osada, H., Valge-Archer, V., Wadman, I., Warren, A. Leukemia (1997) [Pubmed]
  31. VEGF directs newly gastrulated mesoderm to the endothelial lineage. Giles, P.B., Candy, C.L., Fleming, P.A., Owens, R.W., Argraves, W.S., Drake, C.J. Dev. Biol. (2005) [Pubmed]
  32. Age-related phenotypic and oncogenic differences in T-cell acute lymphoblastic leukemias may reflect thymic atrophy. Asnafi, V., Beldjord, K., Libura, M., Villarese, P., Millien, C., Ballerini, P., Kuhlein, E., Lafage-Pochitaloff, M., Delabesse, E., Bernard, O., Macintyre, E. Blood (2004) [Pubmed]
  33. Products of the TAL2 oncogene in leukemic T cells: bHLH phosphoproteins with DNA-binding activity. Xia, Y., Hwang, L.Y., Cobb, M.H., Baer, R. Oncogene (1994) [Pubmed]
  34. The LIM-only protein LMO4 modulates the transcriptional activity of HEN1. Manetopoulos, C., Hansson, A., Karlsson, J., Jönsson, J.I., Axelson, H. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
  35. Transcriptional regulatory networks downstream of TAL1/SCL in T-cell acute lymphoblastic leukemia. Palomero, T., Odom, D.T., O'Neil, J., Ferrando, A.A., Margolin, A., Neuberg, D.S., Winter, S.S., Larson, R.S., Li, W., Liu, X.S., Young, R.A., Look, A.T. Blood (2006) [Pubmed]
WikiGenes - Universities