The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

TRPS1  -  trichorhinophalangeal syndrome I

Homo sapiens

Synonyms: GC79, LGCR, Tricho-rhino-phalangeal syndrome type I protein, Zinc finger protein GC79, Zinc finger transcription factor Trps1
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of TRPS1

 

Psychiatry related information on TRPS1

 

High impact information on TRPS1

 

Biological context of TRPS1

  • We did not find any mutation in the parents of sporadic patients or in apparently healthy relatives of familial patients, indicating complete penetrance of TRPS1 mutations [9].
  • The chromosome 8 breakpoint of a balanced t(8;9)(q24.11;q33.3) translocation from a patient with trichorhinophalangeal syndrome (TRPS I) was found to be located just within the proximal end of the minimal deletion region [1].
  • Missense mutation of TRPS1 in a family of tricho-rhino-phalangeal syndrome type III [10].
  • Our results suggest a role of TRPS1 in androgen regulation of PSA gene expression [3].
  • The etiology of the different types of TRPS can result from either single base pair mutations, or the complete deletion of the TRPS1 gene, which encodes a zinc-finger transcription factor located on chromosomal band 8q24 [11].
 

Anatomical context of TRPS1

  • Interestingly, we found that LC8a co-localizes with TRPS1 in dot-like structures in the cell nucleus [12].
  • Here we report that heterozygous mice with deletions of the TRPS1 GATA domain (TRPS1(+/Deltagt)) display facial anomalies that overlap with findings for TRPS, whereas TRPS1(Deltagt/Deltagt) mice additionally reveal a complete absence of vibrissae [13].
  • In addition, high TRPS1 mRNA and protein expression levels were observed in four out of five human breast cancer cell lines [14].
  • The exchanges of arginine to histidine, found in two unrelated patients with TRPS I, as well as the exchange of arginine to cysteine, found in another unrelated patient, prevent the translocation of the mutant TRPS1 to the nucleus when ectopically expressed in COS 7 cells [15].
  • Human T cell lines from HLA-A*0201+ female donors exhibiting TRPS-1-specific cytotoxic T lymphocyte activity could also be generated [8].
 

Associations of TRPS1 with chemical compounds

 

Regulatory relationships of TRPS1

  • Using a luciferase reporter assay, we could demonstrate that the repressional function of TRPS1 is inhibited by RNF4 [20].
  • The atypical GATA protein TRPS1 represses androgen-induced prostate-specific antigen expression in LNCaP prostate cancer cells [3].
  • In addition, GATA-regulated reporter gene assay indicated that LC8a is able to suppress the transcriptional repression activity of TRPS1 [12].
  • These data show that TRPS1 protein expression is regulated by androgens via the AR in human prostate cancer xenografts [14].
  • Interestingly, one of these sites bound the TRPS1 transcription factor and we demonstrated that TRPS1 is able to repress the RUNX2 promoter [21].
 

Other interactions of TRPS1

  • This finding suggests that RNF4 is a negative regulator of TRPS1 activity [20].
  • Our data exclude EIF3S3 as the TRPS1 gene [22].
  • Furthermore, overexpression of TRPS1 reduced the androgen-induced endogenous PSA levels secreted in culture medium of LNCaP cells [3].
  • We found that two distinct regions of TRPS1 can physically interact with the dynein light chain 8 protein, LC8a, that are at least 458 amino acids apart from each other [12].
  • Androgen withdrawal by castration resulted in an increase in TRPS1 protein in two androgen-dependent xenografts, indicating relieved repression by action of AR [14].
 

Analytical, diagnostic and therapeutic context of TRPS1

References

  1. A 4-megabase YAC contig that spans the Langer-Giedion syndrome region on human chromosome 8q24.1: use in refining the location of the trichorhinophalangeal syndrome and multiple exostoses genes (TRPS1 and EXT1). Hou, J., Parrish, J., Lüdecke, H.J., Sapru, M., Wang, Y., Chen, W., Hill, A., Siegel-Bartelt, J., Northrup, H., Elder, F.F. Genomics (1995) [Pubmed]
  2. Expression and copy number analysis of TRPS1, EIF3S3 and MYC genes in breast and prostate cancer. Savinainen, K.J., Linja, M.J., Saramäki, O.R., Tammela, T.L., Chang, G.T., Brinkmann, A.O., Visakorpi, T. Br. J. Cancer (2004) [Pubmed]
  3. The atypical GATA protein TRPS1 represses androgen-induced prostate-specific antigen expression in LNCaP prostate cancer cells. van den Bemd, G.J., Jhamai, M., Brinkmann, A.O., Chang, G.T. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
  4. Genes and chromosomal breakpoints in the Langer-Giedion syndrome region on human chromosome 8. Lüdecke, H.J., Schmidt, O., Nardmann, J., von Holtum, D., Meinecke, P., Muenke, M., Horsthemke, B. Hum. Genet. (1999) [Pubmed]
  5. A 4 Mb cryptic deletion associated with inv(8)(q13.1q24.11) in a patient with trichorhinophalangeal syndrome type I. Sasaki, T., Tonoki, H., Soejima, H., Niikawa, N. J. Med. Genet. (1997) [Pubmed]
  6. Mutations in a new gene, encoding a zinc-finger protein, cause tricho-rhino-phalangeal syndrome type I. Momeni, P., Glöckner, G., Schmidt, O., von Holtum, D., Albrecht, B., Gillessen-Kaesbach, G., Hennekam, R., Meinecke, P., Zabel, B., Rosenthal, A., Horsthemke, B., Lüdecke, H.J. Nat. Genet. (2000) [Pubmed]
  7. Transcriptional repression and developmental functions of the atypical vertebrate GATA protein TRPS1. Malik, T.H., Shoichet, S.A., Latham, P., Kroll, T.G., Peters, L.L., Shivdasani, R.A. EMBO J. (2001) [Pubmed]
  8. The gene associated with trichorhinophalangeal syndrome in humans is overexpressed in breast cancer. Radvanyi, L., Singh-Sandhu, D., Gallichan, S., Lovitt, C., Pedyczak, A., Mallo, G., Gish, K., Kwok, K., Hanna, W., Zubovits, J., Armes, J., Venter, D., Hakimi, J., Shortreed, J., Donovan, M., Parrington, M., Dunn, P., Oomen, R., Tartaglia, J., Berinstein, N.L. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  9. Genotypic and phenotypic spectrum in tricho-rhino-phalangeal syndrome types I and III. Lüdecke, H.J., Schaper, J., Meinecke, P., Momeni, P., Gross, S., von Holtum D, n.u.l.l., Hirche, H., Abramowicz, M.J., Albrecht, B., Apacik, C., Christen, H.J., Claussen, U., Devriendt, K., Fastnacht, E., Forderer, A., Friedrich, U., Goodship, T.H., Greiwe, M., Hamm, H., Hennekam, R.C., Hinkel, G.K., Hoeltzenbein, M., Kayserili, H., Majewski, F., Mathieu, M., McLeod, R., Midro, A.T., Moog, U., Nagai, T., Niikawa, N., Orstavik, K.H., Plöchl, E., Seitz, C., Schmidtke, J., Tranebjaerg, L., Tsukahara, M., Wittwer, B., Zabel, B., Gillessen-Kaesbach, G., Horsthemke, B. Am. J. Hum. Genet. (2001) [Pubmed]
  10. Missense mutation of TRPS1 in a family of tricho-rhino-phalangeal syndrome type III. Kobayashi, H., Hino, M., Shimodahira, M., Iwakura, T., Ishihara, T., Ikekubo, K., Ogawa, Y., Nakao, K., Kurahachi, H. Am. J. Med. Genet. (2002) [Pubmed]
  11. Analysis of novel and recurrent mutations responsible for the tricho-rhino-phalangeal syndromes. Hilton, M.J., Sawyer, J.M., Gutiérrez, L., Hogart, A., Kung, T.C., Wells, D.E. J. Hum. Genet. (2002) [Pubmed]
  12. Nuclear interaction of the dynein light chain LC8a with the TRPS1 transcription factor suppresses the transcriptional repression activity of TRPS1. Kaiser, F.J., Tavassoli, K., Van den Bemd, G.J., Chang, G.T., Horsthemke, B., Möröy, T., Lüdecke, H.J. Hum. Mol. Genet. (2003) [Pubmed]
  13. Deletion of the GATA domain of TRPS1 causes an absence of facial hair and provides new insights into the bone disorder in inherited tricho-rhino-phalangeal syndromes. Malik, T.H., Von Stechow, D., Bronson, R.T., Shivdasani, R.A. Mol. Cell. Biol. (2002) [Pubmed]
  14. The TRPS1 transcription factor: androgenic regulation in prostate cancer and high expression in breast cancer. Chang, G.T., Jhamai, M., van Weerden, W.M., Jenster, G., Brinkmann, A.O. Endocr. Relat. Cancer (2004) [Pubmed]
  15. Novel missense mutations in the TRPS1 transcription factor define the nuclear localization signal. Kaiser, F.J., Brega, P., Raff, M.L., Byers, P.H., Gallati, S., Kay, T.T., de Almeida, S., Horsthemke, B., Lüdecke, H.J. Eur. J. Hum. Genet. (2004) [Pubmed]
  16. SUMOylation modulates transcriptional repression by TRPS1. Kaiser, F.J., Lüdecke, H.J., Weger, S. Biol. Chem. (2007) [Pubmed]
  17. Quantitative measurements of the changes in protein thiols in cervical intraepithelial neoplasia and in carcinoma of the human uterine cervix provide evidence for the existence of a biochemical field effect. Benedetto, C., Bajardi, F., Ghiringhello, B., Marozio, L., Nöhammer, G., Phitakpraiwan, P., Rojanapo, W., Schauenstein, E., Slater, T.F. Cancer Res. (1990) [Pubmed]
  18. High-yield functional expression of human sodium/d-glucose cotransporter1 in Pichia pastoris and characterization of ligand-induced conformational changes as studied by tryptophan fluorescence. Tyagi, N.K., Goyal, P., Kumar, A., Pandey, D., Siess, W., Kinne, R.K. Biochemistry (2005) [Pubmed]
  19. Neocarzinostatin: selective tryptophan oxidation and neocarzinostatin-chromophore binding to apo-neocarzinostatin. Edo, K., Saito, K., Matsuda, Y., Akiyama-Murai, Y., Mizugaki, M., Koide, Y., Ishida, N. Chem. Pharm. Bull. (1991) [Pubmed]
  20. The RING finger protein RNF4, a co-regulator of transcription, interacts with the TRPS1 transcription factor. Kaiser, F.J., Möröy, T., Chang, G.T., Horsthemke, B., Lüdecke, H.J. J. Biol. Chem. (2003) [Pubmed]
  21. Mutations and promoter SNPs in RUNX2, a transcriptional regulator of bone formation. Napierala, D., Garcia-Rojas, X., Sam, K., Wakui, K., Chen, C., Mendoza-Londono, R., Zhou, G., Zheng, Q., Lee, B. Mol. Genet. Metab. (2005) [Pubmed]
  22. The EIF3S3 gene encoding the p40 subunit of the translation initiation factor eIF3 has eight exons and maps to the Langer-Giedion syndrome chromosome region on 8q24, but is not the TRPS1 gene. Schmidt, O., von Holtum, D., Gross, S., Horsthemke, B., Lüdecke, H.J. Hum. Genet. (1999) [Pubmed]
  23. Structure and function of GC79/TRPS1, a novel androgen-repressible apoptosis gene. Chang, G.T., van den Bemd, G.J., Jhamai, M., Brinkmann, A.O. Apoptosis (2002) [Pubmed]
 
WikiGenes - Universities