The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

NUP214  -  nucleoporin 214kDa

Homo sapiens

Synonyms: 214 kDa nucleoporin, CAIN, CAN, D9S46E, KIAA0023, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of NUP214


High impact information on NUP214

  • The constitutively phosphorylated tyrosine kinase NUP214-ABL1 is sensitive to the tyrosine kinase inhibitor imatinib [1].
  • Molecular analyses delineated the amplicon as a 500-kb region from chromosome band 9q34, containing the oncogenes ABL1 and NUP214 (refs. 5,6) [1].
  • We detected the NUP214-ABL1 transcript in five individuals with the ABL1 amplification, in 5 of 85 (5.8%) additional individuals with T-ALL and in 3 of 22 T-ALL cell lines [1].
  • These studies identify HOXA9 as an important human myeloid leukaemia gene and suggest an important role for nucleoporins in human myeloid leukaemia given that a second nucleoporin, NUP214, has also been implicated in human myeloid leukaemia [5].
  • We uncovered direct interactions of Smad2 with the nucleoporins CAN/Nup214 and Nup153 [6].

Biological context of NUP214


Anatomical context of NUP214


Associations of NUP214 with chemical compounds

  • One component of these filaments is the large O-linked glycoprotein CAN/Nup214 [14].
  • However, our studies on this element reveal that its efficient function is sensitive to the overexpression of the C terminus of CAN/Nup214 and treatment with the antimicrobial agent leptomycin B [15].
  • In contrast, ATP depletion, calcium store depletion by EGTA or thapsigargin, and high concentrations of divalent cation (i.e. 2 mM Ca(2+) and 2 mM Mg(2+)) constrain the distribution of the FG-repeats of Nup153 and Nup214 [16].
  • Nonmembrane nucleoporins Nup153, Nup214, and Nup358 that are modified by O-linked N-acetylglucosamine and recognized by a monoclonal antibody were phosphorylated throughout the cell cycle and hyperphosphorylated during M phase [17].
  • Initiatives with platinum- and quinazoline-based antitumor molecules--Fourteenth Bruce F. Cain Memorial Award Lecture [18].

Physical interactions of NUP214

  • Nuclear pore complexes assembled in the absence of Nup214/Nup88 or Nup358 were fully functional in nuclear protein import, whereas nuclear mRNA export was slightly impaired [19].

Other interactions of NUP214

  • Interestingly, FG repeat-containing segments derived from the nucleoporins NUP153 and CAN/NUP214 functioned similarly to those from NUP98 [20].
  • In this report we unraveled nuclear import mechanisms of Smad3 and Smad4 that are dependent on their interaction with FG-repeat-containing nucleoporins such as CAN/Nup214, without the involvement of importin molecules that are responsible for most of the known nuclear import events [21].
  • The RanQ69L preincubation leads to accumulation of CRM1 at the cytoplasmic periphery of the nuclear pore complex (NPC) in association with the p62 complex and Can/Nup214 [22].
  • Both the FG-repeat domain of nucleoporin CAN/Nup214 and a novel human 15 kDa protein (p15) with homology to NTF2 (a nuclear transport factor which associates with RanGDP), directly bind to TAP [23].
  • These data indicate that Nup88 and Nup214 mediate the attachment of Nup358 to the NPC [9].

Analytical, diagnostic and therapeutic context of NUP214

  • Based on the results, we have established and tested a novel PCR method for simplified detection of the NUP214-ABL1 fusion gene [24].
  • Immunofluorescence analyses showed that SET/TAF-Ibeta and CAN/Nup214 are found in the nucleus and the nuclear envelope, respectively, whereas the majority of SET/TAF-Ibeta-CAN/Nup214 is localized in the nucleus [25].
  • Combined reverse transcription-polymerase chain reaction (RT-PCR) identifies a unique transcript in A-172 cells that encodes an in-frame, tandem duplication of both tyrosine kinase and calcium internalization (TK/CAIN) domains (exons 18 through 26) [26].
  • CaN protein levels were measured by Western-blot analysis in samples from 15 schizophrenia patients vs. 15 control subjects [13].
  • The transport perspective is then used to ask, and partly answer, the question: Can protein displacement be responsible for patterns of thrombus formation and cellular adhesion that are seen on the blood-wetted surfaces of devices found in medical practice: artificial organs and vascular prostheses [27]?


  1. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Graux, C., Cools, J., Melotte, C., Quentmeier, H., Ferrando, A., Levine, R., Vermeesch, J.R., Stul, M., Dutta, B., Boeckx, N., Bosly, A., Heimann, P., Uyttebroeck, A., Mentens, N., Somers, R., MacLeod, R.A., Drexler, H.G., Look, A.T., Gilliland, D.G., Michaux, L., Vandenberghe, P., Wlodarska, I., Marynen, P., Hagemeijer, A. Nat. Genet. (2004) [Pubmed]
  2. Nucleoporins nup98 and nup214 participate in nuclear export of human immunodeficiency virus type 1 Rev. Zolotukhin, A.S., Felber, B.K. J. Virol. (1999) [Pubmed]
  3. DEK-CAN molecular monitoring of myeloid malignancies could aid therapeutic stratification. Garçon, L., Libura, M., Delabesse, E., Valensi, F., Asnafi, V., Berger, C., Schmitt, C., Leblanc, T., Buzyn, A., Macintyre, E. Leukemia (2005) [Pubmed]
  4. The myeloid leukemia-associated protein SET is a potent inhibitor of protein phosphatase 2A. Li, M., Makkinje, A., Damuni, Z. J. Biol. Chem. (1996) [Pubmed]
  5. Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nakamura, T., Largaespada, D.A., Lee, M.P., Johnson, L.A., Ohyashiki, K., Toyama, K., Chen, S.J., Willman, C.L., Chen, I.M., Feinberg, A.P., Jenkins, N.A., Copeland, N.G., Shaughnessy, J.D. Nat. Genet. (1996) [Pubmed]
  6. Smad2 nucleocytoplasmic shuttling by nucleoporins CAN/Nup214 and Nup153 feeds TGFbeta signaling complexes in the cytoplasm and nucleus. Xu, L., Kang, Y., Cöl, S., Massagué, J. Mol. Cell (2002) [Pubmed]
  7. Overexpression of the nucleoporin CAN/NUP214 induces growth arrest, nucleocytoplasmic transport defects, and apoptosis. Boer, J., Bonten-Surtel, J., Grosveld, G. Mol. Cell. Biol. (1998) [Pubmed]
  8. Fusion of EML1 to ABL1 in T-cell acute lymphoblastic leukemia with cryptic t(9;14)(q34;q32). De Keersmaecker, K., Graux, C., Odero, M.D., Mentens, N., Somers, R., Maertens, J., Wlodarska, I., Vandenberghe, P., Hagemeijer, A., Marynen, P., Cools, J. Blood (2005) [Pubmed]
  9. Nup358/RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1-mediated nuclear protein export. Bernad, R., van der Velde, H., Fornerod, M., Pickersgill, H. Mol. Cell. Biol. (2004) [Pubmed]
  10. RanGTP-regulated interactions of CRM1 with nucleoporins and a shuttling DEAD-box helicase. Askjaer, P., Bachi, A., Wilm, M., Bischoff, F.R., Weeks, D.L., Ogniewski, V., Ohno, M., Niehrs, C., Kjems, J., Mattaj, I.W., Fornerod, M. Mol. Cell. Biol. (1999) [Pubmed]
  11. The nucleoporin CAN/Nup214 binds to both the cytoplasmic and the nucleoplasmic sides of the nuclear pore complex in overexpressing cells. Boer, J.M., van Deursen, J.M., Croes, H.J., Fransen, J.A., Grosveld, G.C. Exp. Cell Res. (1997) [Pubmed]
  12. Nucleoporin domain topology is linked to the transport status of the nuclear pore complex. Paulillo, S.M., Phillips, E.M., Köser, J., Sauder, U., Ullman, K.S., Powers, M.A., Fahrenkrog, B. J. Mol. Biol. (2005) [Pubmed]
  13. Postmortem brain calcineurin protein levels in schizophrenia patients are not different from controls. Kozlovsky, N., Scarr, E., Dean, B., Agam, G. Schizophr. Res. (2006) [Pubmed]
  14. Nup84, a novel nucleoporin that is associated with CAN/Nup214 on the cytoplasmic face of the nuclear pore complex. Bastos, R., Ribas de Pouplana, L., Enarson, M., Bodoor, K., Burke, B. J. Cell Biol. (1997) [Pubmed]
  15. CRM1-dependent function of a cis-acting RNA export element. Popa, I., Harris, M.E., Donello, J.E., Hope, T.J. Mol. Cell. Biol. (2002) [Pubmed]
  16. Changes in nucleoporin domain topology in response to chemical effectors. Paulillo, S.M., Powers, M.A., Ullman, K.S., Fahrenkrog, B. J. Mol. Biol. (2006) [Pubmed]
  17. Cell cycle-dependent phosphorylation of nucleoporins and nuclear pore membrane protein Gp210. Favreau, C., Worman, H.J., Wozniak, R.W., Frappier, T., Courvalin, J.C. Biochemistry (1996) [Pubmed]
  18. Initiatives with platinum- and quinazoline-based antitumor molecules--Fourteenth Bruce F. Cain Memorial Award Lecture. Harrap, K.R. Cancer Res. (1995) [Pubmed]
  19. Nup214 is required for CRM1-dependent nuclear protein export in vivo. Hutten, S., Kehlenbach, R.H. Mol. Cell. Biol. (2006) [Pubmed]
  20. CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Kasper, L.H., Brindle, P.K., Schnabel, C.A., Pritchard, C.E., Cleary, M.L., van Deursen, J.M. Mol. Cell. Biol. (1999) [Pubmed]
  21. Distinct domain utilization by Smad3 and Smad4 for nucleoporin interaction and nuclear import. Xu, L., Alarcón, C., Cöl, S., Massagué, J. J. Biol. Chem. (2003) [Pubmed]
  22. A role for RanBP1 in the release of CRM1 from the nuclear pore complex in a terminal step of nuclear export. Kehlenbach, R.H., Dickmanns, A., Kehlenbach, A., Guan, T., Gerace, L. J. Cell Biol. (1999) [Pubmed]
  23. The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. Katahira, J., Strässer, K., Podtelejnikov, A., Mann, M., Jung, J.U., Hurt, E. EMBO J. (1999) [Pubmed]
  24. NUP214-ABL1 in adult T-ALL: the GMALL study group experience. Burmeister, T., G??kbuget, N., Reinhardt, R., Rieder, H., Hoelzer, D., Schwartz, S. Blood (2006) [Pubmed]
  25. Aberrant intracellular localization of SET-CAN fusion protein, associated with a leukemia, disorganizes nuclear export. Saito, S., Miyaji-Yamaguchi, M., Nagata, K. Int. J. Cancer (2004) [Pubmed]
  26. Tandem duplication of the epidermal growth factor receptor tyrosine kinase and calcium internalization domains in A-172 glioma cells. Fenstermaker, R.A., Ciesielski, M.J., Castiglia, G.J. Oncogene (1998) [Pubmed]
  27. Is the Vroman effect of importance in the interaction of blood with artificial materials? Leonard, E.F., Vroman, L. Journal of biomaterials science. Polymer edition. (1991) [Pubmed]
WikiGenes - Universities