The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

SEC23  -  GTPase-activating protein SEC23

Saccharomyces cerevisiae S288c

Synonyms: P9705.14, Protein transport protein SEC23, YPR181C
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

High impact information on SEC23

 

Biological context of SEC23

 

Anatomical context of SEC23

 

Associations of SEC23 with chemical compounds

  • The isolated Sec23p subunit and the oligomeric complex stimulated guanosine triphosphatase (GTPase) activity of Sar1p 10- to 15-fold but did not activate two other small GTP-binding proteins involved in vesicle traffic (Ypt1p and ARF) [13].
  • The vesicles produced are functionally distinct from the ER: they transfer pro-alpha-factor to the Golgi apparatus faster and more efficiently than the ER, they do not require Sec12p or Sec23p to complete transfer, and transfer is resistant to GTP gamma S. Targeting of vesicles to the Golgi apparatus requires Ypt1p and Sec18p [7].
  • The GTPase-activating protein (GAP) activity of Sec23 involves an arginine side chain inserted into the Sar1 active site [3].
  • A second motif, double phenylalanine (FF), present in the cytoplasmic domain of all five members, was shown to participate in the binding of Sec23 (COP II) [14].
  • Using mutants defective in the heavy chain of clathrin and in several subunits of the COPI and the COPII complexes, we found that clathrin, as well as two cytosolic subunits of COPII, Sec23p and Sec24p, could be involved in internalization of the yeast maltose transporter [15].
 

Physical interactions of SEC23

  • Sec16p binds to Sec23p, a COPII vesicle coat protein, as shown by the two-hybrid interaction assay and affinity studies in cell extracts [8].
  • A tagged version of Lst1p was purified and eluted as a heterodimer complexed with Sec23p comparable to the Sec23/24p heterodimer [10].
  • Affinity studies with detergent- solubilized yeast proteins showed that the C-terminal 53 amino acid tail of Sys1p binds effectively to the cytoplasmic Sec23p-Sec24p COPII subcomplex [16].
  • Ordering experiments using the dilution resistant intermediate and reversible Sec23p complex inhibition indicate Sec18p action is required before LMA1 function [17].
  • Both motifs participate in the Sar1-dependent binding of Sec23p-Sec24p complex to the CTs during early steps of cargo selection [18].
 

Other interactions of SEC23

  • The sec23 mutant is defective in activation of Sar1 GTPase (Yoshihisa, T., C. Barlowe, and R. Schekman. 1993. Science (Wash. DC). 259:1466-1468) [9].
  • Vesicles formed with a mixture of Sec23/Lst1p and Sec23/24p were similar morphologically and in their buoyant density, but larger than normal COPII vesicles (87-nm vs. 75-nm diameter) [10].
  • Abundant proteins in the purified vesicles produced with Sec23p/Iss1p were indistinguishable from those in the regular COPII vesicles produced with Sec23p/Sec24p [11].
  • Moreover, the yeast two-hybrid assay revealed that Sfb2p, similarly to Sec24p, interacted with Sec23p [19].
  • On the contrary, over-expression of SED4 aggravates the ts growth of sec23 cells [20].
 

Analytical, diagnostic and therapeutic context of SEC23

References

  1. COPII-coated vesicle formation reconstituted with purified coat proteins and chemically defined liposomes. Matsuoka, K., Orci, L., Amherdt, M., Bednarek, S.Y., Hamamoto, S., Schekman, R., Yeung, T. Cell (1998) [Pubmed]
  2. Reconstitution of SEC gene product-dependent intercompartmental protein transport. Baker, D., Hicke, L., Rexach, M., Schleyer, M., Schekman, R. Cell (1988) [Pubmed]
  3. Structure of the Sec23/24-Sar1 pre-budding complex of the COPII vesicle coat. Bi, X., Corpina, R.A., Goldberg, J. Nature (2002) [Pubmed]
  4. Identification and differential expression of yeast SEC23-related gene (Msec23) in mouse tissues. Wadhwa, R., Kaul, S.C., Komatsu, Y., Ikawa, Y., Sarai, A., Sugimoto, Y. FEBS Lett. (1993) [Pubmed]
  5. Multicopy STS1 restores both protein transport and ribosomal RNA stability in a new yeast sec23 mutant allele. Liang, S., Lacroute, F., Képès, F. Eur. J. Cell Biol. (1993) [Pubmed]
  6. Ubp3 requires a cofactor, Bre5, to specifically de-ubiquitinate the COPII protein, Sec23. Cohen, M., Stutz, F., Belgareh, N., Haguenauer-Tsapis, R., Dargemont, C. Nat. Cell Biol. (2003) [Pubmed]
  7. Distinct biochemical requirements for the budding, targeting, and fusion of ER-derived transport vesicles. Rexach, M.F., Schekman, R.W. J. Cell Biol. (1991) [Pubmed]
  8. Yeast SEC16 gene encodes a multidomain vesicle coat protein that interacts with Sec23p. Espenshade, P., Gimeno, R.E., Holzmacher, E., Teung, P., Kaiser, C.A. J. Cell Biol. (1995) [Pubmed]
  9. Inhibition of GTP hydrolysis by Sar1p causes accumulation of vesicles that are a functional intermediate of the ER-to-Golgi transport in yeast. Oka, T., Nakano, A. J. Cell Biol. (1994) [Pubmed]
  10. Lst1p and Sec24p cooperate in sorting of the plasma membrane ATPase into COPII vesicles in Saccharomyces cerevisiae. Shimoni, Y., Kurihara, T., Ravazzola, M., Amherdt, M., Orci, L., Schekman, R. J. Cell Biol. (2000) [Pubmed]
  11. Sec24p and Iss1p function interchangeably in transport vesicle formation from the endoplasmic reticulum in Saccharomyces cerevisiae. Kurihara, T., Hamamoto, S., Gimeno, R.E., Kaiser, C.A., Schekman, R., Yoshihisa, T. Mol. Biol. Cell (2000) [Pubmed]
  12. Yeast Sec23p acts in the cytoplasm to promote protein transport from the endoplasmic reticulum to the Golgi complex in vivo and in vitro. Hicke, L., Schekman, R. EMBO J. (1989) [Pubmed]
  13. Requirement for a GTPase-activating protein in vesicle budding from the endoplasmic reticulum. Yoshihisa, T., Barlowe, C., Schekman, R. Science (1993) [Pubmed]
  14. gp25L/emp24/p24 protein family members of the cis-Golgi network bind both COP I and II coatomer. Dominguez, M., Dejgaard, K., Füllekrug, J., Dahan, S., Fazel, A., Paccaud, J.P., Thomas, D.Y., Bergeron, J.J., Nilsson, T. J. Cell Biol. (1998) [Pubmed]
  15. Clathrin and two components of the COPII complex, Sec23p and Sec24p, could be involved in endocytosis of the Saccharomyces cerevisiae maltose transporter. Peñalver, E., Lucero, P., Moreno, E., Lagunas, R. J. Bacteriol. (1999) [Pubmed]
  16. An acidic sequence of a putative yeast Golgi membrane protein binds COPII and facilitates ER export. Votsmeier, C., Gallwitz, D. EMBO J. (2001) [Pubmed]
  17. Coupled ER to Golgi transport reconstituted with purified cytosolic proteins. Barlowe, C. J. Cell Biol. (1997) [Pubmed]
  18. Endoplasmic reticulum export of glycosyltransferases depends on interaction of a cytoplasmic dibasic motif with Sar1. Giraudo, C.G., Maccioni, H.J. Mol. Biol. Cell (2003) [Pubmed]
  19. Sfb2p, a yeast protein related to Sec24p, can function as a constituent of COPII coats required for vesicle budding from the endoplasmic reticulum. Higashio, H., Kimata, Y., Kiriyama, T., Hirata, A., Kohno, K. J. Biol. Chem. (2000) [Pubmed]
  20. Sed4p functions as a positive regulator of Sar1p probably through inhibition of the GTPase activation by Sec23p. Saito-Nakano, Y., Nakano, A. Genes Cells (2000) [Pubmed]
  21. Structure of the Sec23p/24p and Sec13p/31p complexes of COPII. Lederkremer, G.Z., Cheng, Y., Petre, B.M., Vogan, E., Springer, S., Schekman, R., Walz, T., Kirchhausen, T. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  22. A membrane protein enriched in endoplasmic reticulum exit sites interacts with COPII. Tang, B.L., Ong, Y.S., Huang, B., Wei, S., Wong, E.T., Qi, R., Horstmann, H., Hong, W. J. Biol. Chem. (2001) [Pubmed]
 
WikiGenes - Universities