The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

CAV1  -  caveolin 1, caveolae protein, 22kDa

Homo sapiens

Synonyms: BSCL3, CAV, CGL3, Caveolin-1, LCCNS, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of CAV1

  • We found that CAV1 expression was reduced or absent in 95% of small cell lung cancers (SCLCs; n = 21 lines), whereas it was retained in 76% of non-small cell lung cancers (NSCLCs; n = 25 lines) compared with normal human lung epithelial cultures, where it was abundantly expressed [1].
  • These data provide a molecular explanation for why only a single mutated CAV1 allele is found in patients with breast cancer [2].
  • During the CAV1 regimen, we observed that herpes zoster developed in 13 of 161 (8.1 percent) patients in association with their therapy [3].
  • Although functional studies are needed to better define the role of CDH13 and CAV1 in the malignant behavior of osteosarcoma cells, the data presented here provide an aid to understanding the biological functions of L/B/K ALP in bone tumors [4].
  • In sporadic carcinomas, CAV1 expression was found in 21 out of 496 valuable cases (4.2%) [5].
  • These results indicate that strategies targeting Cav-1 may be useful as an approach to improve conventional therapies, including radiotherapy, for pancreatic cancer [6].
  • In vivo, Cav-1 overexpression abrogates the metastatic ability of osteosarcoma cells. c-Src and c-Met tyrosine kinases, which are activated in osteosarcoma, colocalize with Cav-1 and are inhibited on Cav-1 overexpression [7].

Psychiatry related information on CAV1

  • CONCLUSIONS: In these aged rats the decreased ratio of trabecular smooth muscle-to-collagen and the reduced expression of caveolin-1 may contribute to erectile dysfunction [8].
  • An experimental investigation of a single patient, CAV, with an acquired dyslexia in which there was a significant impairment in his ability to read concrete words compared with abstract words is reported [9].

High impact information on CAV1

  • The caveolin proteins (caveolin-1, -2, and -3) serve as the structural components of caveolae, while also functioning as scaffolding proteins, capable of recruiting numerous signaling molecules to caveolae, as well as regulating their activity [10].
  • Indeed, studies in caveolin-deficient mice have implicated these structures in a host of human diseases, including diabetes, cancer, cardiovascular disease, atherosclerosis, pulmonary fibrosis, and a variety of degenerative muscular dystrophies [10].
  • Interaction with DAF also activates Fyn kinase, an event that is required for the phosphorylation of caveolin and transport of virus into the cell within caveolar vesicles [11].
  • Thus, we conclude that, unlike cyclic assembly and disassembly of coat proteins in vesicular transport, oligomeric complexes of caveolin-1 confer permanent structural stability to caveolar vesicles that transiently interact with endosomes to form subdomains and release cargo selectively by compartment-specific cues [12].
  • We have demonstrated that elevated caveolin protein levels are associated with human prostate cancer progression in pathological specimens [13].

Chemical compound and disease context of CAV1


Biological context of CAV1


Anatomical context of CAV1


Associations of CAV1 with chemical compounds


Physical interactions of CAV1

  • Using a mammalian two-hybrid assay system, we determine that the NH(2) terminus region of caveolin-1 is responsible for the interaction with both the NH(2)-terminal domain and the ligand-binding domain of AR [16].
  • Cav-2 was able to interact with Cav-1 in the Golgi complex but this interaction was not sufficient to export it from this compartment [27].
  • Caveolin proteins directly interact with signaling molecules including EGF receptor and suppress the activation of EGFR upon EGF stimulation [28].
  • Full-length Cav1 bound to both the N and C termini of TRPC1 [29].
  • Here, we show that NOSTRIN directly binds to caveolin-1, a well-established inhibitor of eNOS [30].

Enzymatic interactions of CAV1

  • Most interestingly, the association of MT1-MMP with phosphorylated caveolin-1 induced the recruitment of Src and a concomitant inhibition of the kinase activity of the enzyme, suggesting that this complex may be involved in the negative regulation of Src activity [31].
  • More importantly, we show that caveolin-2 is phosphorylated in vivo at two serine residues and that the phosphorylation of caveolin-2 is necessary for its actions as a positive regulator of caveolin-1 during organelle biogenesis in prostate cancer cells [32].
  • In addition, overexpression of cav-1 significantly increases translocation of phosphorylated androgen receptor to nucleus [33].
  • As expected there was only a weak colocalization between eNOS phosphorylated at Ser-1177 and caveolin-1 [34].
  • Conversely, when these proteins are not properly targeted or lipid-modified, the ability of c-Src to phosphorylate caveolin-1 remains unaffected [35].

Co-localisations of CAV1


Regulatory relationships of CAV1


Other interactions of CAV1


Analytical, diagnostic and therapeutic context of CAV1


  1. Different roles for caveolin-1 in the development of non-small cell lung cancer versus small cell lung cancer. Sunaga, N., Miyajima, K., Suzuki, M., Sato, M., White, M.A., Ramirez, R.D., Shay, J.W., Gazdar, A.F., Minna, J.D. Cancer Res. (2004) [Pubmed]
  2. Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (-/-) null mice show mammary epithelial cell hyperplasia. Lee, H., Park, D.S., Razani, B., Russell, R.G., Pestell, R.G., Lisanti, M.P. Am. J. Pathol. (2002) [Pubmed]
  3. Herpes zoster in patients with carcinoma of the lung. Feld, R., Evans, W.K., DeBoer, G. Am. J. Med. (1982) [Pubmed]
  4. Identification of candidate genes involved in the reversal of malignant phenotype of osteosarcoma cells transfected with the liver/bone/kidney alkaline phosphatase gene. Zucchini, C., Bianchini, M., Valvassori, L., Perdichizzi, S., Benini, S., Manara, M.C., Solmi, R., Strippoli, P., Picci, P., Carinci, P., Scotlandi, K. Bone (2004) [Pubmed]
  5. Caveolin-1 expression is associated with a basal-like phenotype in sporadic and hereditary breast cancer. Pinilla, S.M., Honrado, E., Hardisson, D., Benítez, J., Palacios, J. Breast Cancer Res. Treat. (2006) [Pubmed]
  6. Human pancreatic tumor cells are sensitized to ionizing radiation by knockdown of caveolin-1. Cordes, N., Frick, S., Brunner, T.B., Pilarsky, C., Grützmann, R., Sipos, B., Klöppel, G., McKenna, W.G., Bernhard, E.J. Oncogene (2007) [Pubmed]
  7. Caveolin-1 reduces osteosarcoma metastases by inhibiting c-Src activity and met signaling. Cantiani, L., Manara, M.C., Zucchini, C., De Sanctis, P., Zuntini, M., Valvassori, L., Serra, M., Olivero, M., Di Renzo, M.F., Colombo, M.P., Picci, P., Scotlandi, K. Cancer Res. (2007) [Pubmed]
  8. Decreased trabecular smooth muscle and caveolin-1 expression in the penile tissue of aged rats. Bakircioglu, M.E., Sievert, K.D., Nunes, L., Lau, A., Lin, C.S., Lue, T.F. J. Urol. (2001) [Pubmed]
  9. Concrete word dyslexia. Warrington, E.K. British journal of psychology (London, England : 1953) (1981) [Pubmed]
  10. Role of caveolae and caveolins in health and disease. Cohen, A.W., Hnasko, R., Schubert, W., Lisanti, M.P. Physiol. Rev. (2004) [Pubmed]
  11. Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Coyne, C.B., Bergelson, J.M. Cell (2006) [Pubmed]
  12. Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Pelkmans, L., Bürli, T., Zerial, M., Helenius, A. Cell (2004) [Pubmed]
  13. Suppression of caveolin expression induces androgen sensitivity in metastatic androgen-insensitive mouse prostate cancer cells. Nasu, Y., Timme, T.L., Yang, G., Bangma, C.H., Li, L., Ren, C., Park, S.H., DeLeon, M., Wang, J., Thompson, T.C. Nat. Med. (1998) [Pubmed]
  14. Caveolin-1 and caveolin-2,together with three bone morphogenetic protein-related genes, may encode novel tumor suppressors down-regulated in sporadic follicular thyroid carcinogenesis. Aldred, M.A., Ginn-Pease, M.E., Morrison, C.D., Popkie, A.P., Gimm, O., Hoang-Vu, C., Krause, U., Dralle, H., Jhiang, S.M., Plass, C., Eng, C. Cancer Res. (2003) [Pubmed]
  15. Reciprocal regulation of neu tyrosine kinase activity and caveolin-1 protein expression in vitro and in vivo. Implications for human breast cancer. Engelman, J.A., Lee, R.J., Karnezis, A., Bearss, D.J., Webster, M., Siegel, P., Muller, W.J., Windle, J.J., Pestell, R.G., Lisanti, M.P. J. Biol. Chem. (1998) [Pubmed]
  16. Caveolin-1 interacts with androgen receptor. A positive modulator of androgen receptor mediated transactivation. Lu, M.L., Schneider, M.C., Zheng, Y., Zhang, X., Richie, J.P. J. Biol. Chem. (2001) [Pubmed]
  17. Caveolin-1 interacts with 5-HT2A serotonin receptors and profoundly modulates the signaling of selected Galphaq-coupled protein receptors. Bhatnagar, A., Sheffler, D.J., Kroeze, W.K., Compton-Toth, B., Roth, B.L. J. Biol. Chem. (2004) [Pubmed]
  18. Caveolin-1 tyrosine phosphorylation enhances paclitaxel-mediated cytotoxicity. Shajahan, A.N., Wang, A., Decker, M., Minshall, R.D., Liu, M.C., Clarke, R. J. Biol. Chem. (2007) [Pubmed]
  19. Caveolins as tumour markers in lung cancer detected by combined use of cDNA and tissue microarrays. Wikman, H., Seppänen, J.K., Sarhadi, V.K., Kettunen, E., Salmenkivi, K., Kuosma, E., Vainio-Siukola, K., Nagy, B., Karjalainen, A., Sioris, T., Salo, J., Hollmén, J., Knuutila, S., Anttila, S. J. Pathol. (2004) [Pubmed]
  20. Clinical significance of Caveolin-1, Caveolin-2 and HER2/neu mRNA expression in human breast cancer. Sagara, Y., Mimori, K., Yoshinaga, K., Tanaka, F., Nishida, K., Ohno, S., Inoue, H., Mori, M. Br. J. Cancer (2004) [Pubmed]
  21. Induction of alpha-caveolin-1 (alphaCAV1) expression in bovine granulosa cells in response to an ovulatory dose of human chorionic gonadotropin. Diouf, M.N., Lefebvre, R., Silversides, D.W., Sirois, J., Lussier, J.G. Mol. Reprod. Dev. (2006) [Pubmed]
  22. Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Scherer, P.E., Okamoto, T., Chun, M., Nishimoto, I., Lodish, H.F., Lisanti, M.P. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  23. Caveolin-2 is targeted to lipid droplets, a new "membrane domain" in the cell. Fujimoto, T., Kogo, H., Ishiguro, K., Tauchi, K., Nomura, R. J. Cell Biol. (2001) [Pubmed]
  24. Caveolin-1 regulates matrix metalloproteinases-1 induction and CD147/EMMPRIN cell surface clustering. Tang, W., Hemler, M.E. J. Biol. Chem. (2004) [Pubmed]
  25. Epithelial growth factor-induced phosphorylation of caveolin 1 at tyrosine 14 stimulates caveolae formation in epithelial cells. Orlichenko, L., Huang, B., Krueger, E., McNiven, M.A. J. Biol. Chem. (2006) [Pubmed]
  26. Caveolin mediates rapid glucocorticoid effects and couples glucocorticoid action to the antiproliferative program. Matthews, L., Berry, A., Ohanian, V., Ohanian, J., Garside, H., Ray, D. Mol. Endocrinol. (2008) [Pubmed]
  27. The scaffolding domain of caveolin 2 is responsible for its Golgi localization in Caco-2 cells. Breuza, L., Corby, S., Arsanto, J.P., Delgrossi, M.H., Scheiffele, P., Le Bivic, A. J. Cell. Sci. (2002) [Pubmed]
  28. Attenuation of EGF signaling in senescent cells by caveolin. Park, W.Y., Cho, K.A., Park, J.S., Kim, D.I., Park, S.C. Ann. N. Y. Acad. Sci. (2001) [Pubmed]
  29. Caveolin-1 contributes to assembly of store-operated Ca2+ influx channels by regulating plasma membrane localization of TRPC1. Brazer, S.C., Singh, B.B., Liu, X., Swaim, W., Ambudkar, I.S. J. Biol. Chem. (2003) [Pubmed]
  30. Translocation of endothelial nitric-oxide synthase involves a ternary complex with caveolin-1 and NOSTRIN. Schilling, K., Opitz, N., Wiesenthal, A., Oess, S., Tikkanen, R., Müller-Esterl, W., Icking, A. Mol. Biol. Cell (2006) [Pubmed]
  31. Src-mediated tyrosine phosphorylation of caveolin-1 induces its association with membrane type 1 matrix metalloproteinase. Labrecque, L., Nyalendo, C., Langlois, S., Durocher, Y., Roghi, C., Murphy, G., Gingras, D., Béliveau, R. J. Biol. Chem. (2004) [Pubmed]
  32. The phosphorylation of caveolin-2 on serines 23 and 36 modulates caveolin-1-dependent caveolae formation. Sowa, G., Pypaert, M., Fulton, D., Sessa, W.C. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  33. Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Li, L., Ren, C.H., Tahir, S.A., Ren, C., Thompson, T.C. Mol. Cell. Biol. (2003) [Pubmed]
  34. Phospho-eNOS Ser-114 in human mesenchymal stem cells: constitutive phosphorylation, nuclear localization and upregulation during mitosis. Klinz, F.J., Schmidt, A., Schinköthe, T., Arnhold, S., Desai, B., Popken, F., Brixius, K., Schwinger, R., Mehlhorn, U., Staib, P., Addicks, K., Bloch, W. Eur. J. Cell Biol. (2005) [Pubmed]
  35. Palmitoylation of caveolin-1 at a single site (Cys-156) controls its coupling to the c-Src tyrosine kinase: targeting of dually acylated molecules (GPI-linked, transmembrane, or cytoplasmic) to caveolae effectively uncouples c-Src and caveolin-1 (TYR-14). Lee, H., Woodman, S.E., Engelman, J.A., Volonté, D., Galbiati, F., Kaufman, H.L., Lublin, D.M., Lisanti, M.P. J. Biol. Chem. (2001) [Pubmed]
  36. Expression of caveolin by bovine lymphocytes and antigen-presenting cells. Harris, J., Werling, D., Koss, M., Monaghan, P., Taylor, G., Howard, C.J. Immunology (2002) [Pubmed]
  37. BENE, a novel raft-associated protein of the MAL proteolipid family, interacts with caveolin-1 in human endothelial-like ECV304 cells. de Marco, M.C., Kremer, L., Albar, J.P., Martinez-Menarguez, J.A., Ballesta, J., Garcia-Lopez, M.A., Marazuela, M., Puertollano, R., Alonso, M.A. J. Biol. Chem. (2001) [Pubmed]
  38. Decreased expression of caveolin-1 and altered regulation of mitogen-activated protein kinase in cultured bovine parathyroid cells and human parathyroid adenomas. Kifor, O., Kifor, I., Moore, F.D., Butters, R.R., Cantor, T., Gao, P., Brown, E.M. J. Clin. Endocrinol. Metab. (2003) [Pubmed]
  39. Altered endothelial nitric oxide synthase targeting and conformation and caveolin-1 expression in the diabetic kidney. Komers, R., Schutzer, W.E., Reed, J.F., Lindsley, J.N., Oyama, T.T., Buck, D.C., Mader, S.L., Anderson, S. Diabetes (2006) [Pubmed]
  40. Angiogenesis activators and inhibitors differentially regulate caveolin-1 expression and caveolae formation in vascular endothelial cells. Angiogenesis inhibitors block vascular endothelial growth factor-induced down-regulation of caveolin-1. Liu, J., Razani, B., Tang, S., Terman, B.I., Ware, J.A., Lisanti, M.P. J. Biol. Chem. (1999) [Pubmed]
  41. Caveolin-1 associates with TRAF2 to form a complex that is recruited to tumor necrosis factor receptors. Feng, X., Gaeta, M.L., Madge, L.A., Yang, J.H., Bradley, J.R., Pober, J.S. J. Biol. Chem. (2001) [Pubmed]
  42. CD26 up-regulates expression of CD86 on antigen-presenting cells by means of caveolin-1. Ohnuma, K., Yamochi, T., Uchiyama, M., Nishibashi, K., Yoshikawa, N., Shimizu, N., Iwata, S., Tanaka, H., Dang, N.H., Morimoto, C. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  43. Splenic marginal zone lymphoma: proposal of new diagnostic and prognostic markers identified after tissue and cDNA microarray analysis. Ruiz-Ballesteros, E., Mollejo, M., Rodriguez, A., Camacho, F.I., Algara, P., Martinez, N., Pollán, M., Sanchez-Aguilera, A., Menarguez, J., Campo, E., Martinez, P., Mateo, M., Piris, M.A. Blood (2005) [Pubmed]
  44. Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. Couet, J., Sargiacomo, M., Lisanti, M.P. J. Biol. Chem. (1997) [Pubmed]
  45. E-cadherin is required for caveolin-1-mediated down-regulation of the inhibitor of apoptosis protein survivin via reduced beta-catenin-Tcf/Lef-dependent transcription. Torres, V.A., Tapia, J.C., Rodriguez, D.A., Lladser, A., Arredondo, C., Leyton, L., Quest, A.F. Mol. Cell. Biol. (2007) [Pubmed]
  46. Colocalization and interaction of cyclooxygenase-2 with caveolin-1 in human fibroblasts. Liou, J.Y., Deng, W.G., Gilroy, D.W., Shyue, S.K., Wu, K.K. J. Biol. Chem. (2001) [Pubmed]
WikiGenes - Universities