The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Dental Cementum

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Dental Cementum

 

High impact information on Dental Cementum

  • Scanning electron micrographs of goats fed controlled diets demonstrate that cementum bands preserve variations in the relative orientation of collagen fibers that reflect changes in the magnitude and frequency of occlusal forces from chewing different quality diets [6].
  • Lack of M180 and LRAP mRNA expression correlated with cementum defects observed in the amelogenin-null mice [7].
  • JunB as a downstream mediator of PTHrP actions in cementoblasts [8].
  • Thus, by using Bmi-1 and hTERT, we succeeded in immortalizing cementoblast progenitor cells from BDFC without affecting differentiation potential [9].
  • These results suggest that BMP-2 triggers follicle cells to differentiate toward a cementoblast/osteoblast phenotype and that the MAPK pathway is involved [10].
 

Chemical compound and disease context of Dental Cementum

  • Histologic evaluation revealed regeneration of a complete periodontal attachment apparatus, including new cementum, PDL, and bone coronal to the root notch in four of the six interproximal defects and all evaluable (four of four) furcation defects treated with PDGF [11].
  • After mechanical removal of the cementum and elimination of the smear layer on the dentine surface with EDTA and NaOCl, the root sections were autoclaved and the dentinal tubules infected with E. faecalis (NCTC 775) by incubating in yeast extract glucose broth for 1 week [12].
 

Biological context of Dental Cementum

 

Anatomical context of Dental Cementum

 

Associations of Dental Cementum with chemical compounds

  • The findings indicated that a significant crystal growth can be achieved in human cementum concomitant with fluoride accumulation [23].
  • Sixty root pieces were divided into four equal groups according to the treatment: (1) untreated mineralized cementum; (2) treated with 5 micrograms of fibronectin; (3) partially demineralized in 18% EDTA for 30 min; and (4) both partially demineralized and fibronectin-treated as above [24].
  • The diffraction patterns obtained from the intracellular material and human cellular cementum were similar, with D-spacings of 3.36 and 2.8, consistent with those of hydroxyapatite (3.440 and 2.814) [25].
  • Human and bovine cementum were extracted with 0.5 mol/L CH3COOH followed by 4 mol/L guanidine, and proteins were separated by ion-exchange chromatography and SDS-polyacrylamide gel electrophoresis [26].
  • Cementum was harvested from freshly extracted human teeth and extracted sequentially with 0.5 mol/L acetic acid, 4 mol/L guanidine-0.5 mol/L EDTA, and bacterial collagenase [27].
 

Gene context of Dental Cementum

  • Therefore, Dmp1 is not a tooth-specific protein but rather is expressed in a number of mineralizing tissues including enamel, bone, and cementum [28].
  • The purpose of this study was to determine the impact of PTH-related protein (PTHrP) on AP-1 transcription factors in cementoblasts and the role of JunB in the actions of PTHrP [8].
  • They as well as Bmp-5 may be involved in the induction and formation of dentine and enamel, and Bmp-3 in the development of cementum [29].
  • These results indicate that exposure of cementoblasts to P-LPS can alter cell function by regulating markers of osteoclastic activity (e.g., RANKL/OPG), thereby potentially affecting the inflammation-associated resorption of mineralized tissues [30].
  • Msx2 expression continued in the epithelial cell rests of Malassez, and the nearby cementoblasts intensely expressed Bmp3, which may regulate some functions of the fragmented epithelium [31].
 

Analytical, diagnostic and therapeutic context of Dental Cementum

References

  1. Enlarged occlusal surfaces on first molars due to severe attrition and hypercementosis: examples from prehistoric coastal populations of Texas. Comuzzie, A.G., Steele, D.G. Am. J. Phys. Anthropol. (1989) [Pubmed]
  2. Fluorine concentration changes in human periodontally diseased tooth roots following several treatment times with citric acid. Sampson, W.J., Crawford, A.W. Calcif. Tissue Int. (1985) [Pubmed]
  3. GTR treatment of degree III furcation defects following application of enamel matrix proteins. An experimental study in dogs. Araújo, M.G., Lindhe, J. Journal of clinical periodontology. (1998) [Pubmed]
  4. Relationship between cementum fluoride concentration and root caries experience. Retief, D.H., Wallace, M.C., Brewer, K.P., Bradley, E.L. Gerodontics. (1988) [Pubmed]
  5. Fluoride concentration and profile in different cementum surfaces. Soyman, M., Ulukapi, H., Oztezcan, S., Gürdöl, F., Güven, Y. Journal of Marmara University Dental Faculty. (1997) [Pubmed]
  6. Life history variables preserved in dental cementum microstructure. Lieberman, D.E. Science (1993) [Pubmed]
  7. The receptor activator of nuclear factor-kappa B ligand-mediated osteoclastogenic pathway is elevated in amelogenin-null mice. Hatakeyama, J., Sreenath, T., Hatakeyama, Y., Thyagarajan, T., Shum, L., Gibson, C.W., Wright, J.T., Kulkarni, A.B. J. Biol. Chem. (2003) [Pubmed]
  8. JunB as a downstream mediator of PTHrP actions in cementoblasts. Berry, J.E., Ealba, E.L., Pettway, G.J., Datta, N.S., Swanson, E.C., Somerman, M.J., McCauley, L.K. J. Bone Miner. Res. (2006) [Pubmed]
  9. Immortalization of cementoblast progenitor cells with Bmi-1 and TERT. Saito, M., Handa, K., Kiyono, T., Hattori, S., Yokoi, T., Tsubakimoto, T., Harada, H., Noguchi, T., Toyoda, M., Sato, S., Teranaka, T. J. Bone Miner. Res. (2005) [Pubmed]
  10. Bone morphogenetic protein 2 induces dental follicle cells to differentiate toward a cementoblast/osteoblast phenotype. Zhao, M., Xiao, G., Berry, J.E., Franceschi, R.T., Reddi, A., Somerman, M.J. J. Bone Miner. Res. (2002) [Pubmed]
  11. Periodontal regeneration in humans using recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and allogenic bone. Nevins, M., Camelo, M., Nevins, M.L., Schenk, R.K., Lynch, S.E. J. Periodontol. (2003) [Pubmed]
  12. Efficacy of chlorhexidine in disinfecting dentinal tubules in vitro. Vahdaty, A., Pitt Ford, T.R., Wilson, R.F. Endodontics & dental traumatology. (1993) [Pubmed]
  13. Development expression of bone sialoprotein mRNA in rat mineralized connective tissues. Chen, J., Shapiro, H.S., Sodek, J. J. Bone Miner. Res. (1992) [Pubmed]
  14. Parathyroid hormone-related protein down-regulates bone sialoprotein gene expression in cementoblasts: role of the protein kinase A pathway. Ouyang, H., Franceschi, R.T., McCauley, L.K., Wang, D., Somerman, M.J. Endocrinology (2000) [Pubmed]
  15. Cementum and periodontal wound healing and regeneration. Grzesik, W.J., Narayanan, A.S. Crit. Rev. Oral Biol. Med. (2002) [Pubmed]
  16. Recombinant human basic fibroblast growth factor (bFGF) stimulates periodontal regeneration in class II furcation defects created in beagle dogs. Murakami, S., Takayama, S., Kitamura, M., Shimabukuro, Y., Yanagi, K., Ikezawa, K., Saho, T., Nozaki, T., Okada, H. J. Periodont. Res. (2003) [Pubmed]
  17. Effect of a collagen matrix on healing in periodontal fenestration defects in dogs. Choi, S.Y., Nilvéus, R.E., Minutello, R.D., Zimmerman, G.J., Wikesjö, U.M. J. Periodontol. (1993) [Pubmed]
  18. Immunolocalization of osteopontin, osteocalcin, and dentin sialoprotein during dental root formation and early cementogenesis in the rat. Bronckers, A.L., Farach-Carson, M.C., Van Waveren, E., Butler, W.T. J. Bone Miner. Res. (1994) [Pubmed]
  19. Growth hormone induces bone morphogenetic proteins and bone-related proteins in the developing rat periodontium. Li, H., Bartold, P.M., Young, W.G., Xiao, Y., Waters, M.J. J. Bone Miner. Res. (2001) [Pubmed]
  20. Amelin: an enamel-related protein, transcribed in the cells of epithelial root sheath. Fong, C.D., Slaby, I., Hammarström, L. J. Bone Miner. Res. (1996) [Pubmed]
  21. Altered expression of bone sialoproteins in vitamin D-deficient rBSP2.7Luc transgenic mice. Chen, J.J., Jin, H., Ranly, D.M., Sodek, J., Boyan, B.D. J. Bone Miner. Res. (1999) [Pubmed]
  22. Expression of MMP-8 and MMP-13 mRNAs in rat periodontium during tooth eruption. Tsubota, M., Sasano, Y., Takahashi, I., Kagayama, M., Shimauchi, H. J. Dent. Res. (2002) [Pubmed]
  23. Transmission electron microscopy of cementum crystals correlated with Ca and F distribution in normal and carious human root surfaces. Tohda, H., Fejerskov, O., Yanagisawa, T. J. Dent. Res. (1996) [Pubmed]
  24. The effects of partial demineralization and fibronectin on migration and growth of gingival epithelial cells on cementum in vitro. Pitaru, S., Hekmati, M., Geiger, S., Savion, N. J. Dent. Res. (1988) [Pubmed]
  25. Electron microscopy, micro-analysis, and X-ray diffraction characterization of the mineral-like tissue deposited by human cementum tumor-derived cells. Arzate, H., Alvarez-Pérez, M.A., Alvarez-Fregoso, O., Wusterhaus-Chávez, A., Reyes-Gasga, J., Ximénez-Fyvie, L.A. J. Dent. Res. (2000) [Pubmed]
  26. Cell attachment activity of cementum proteins and mechanism of endotoxin inhibition. Olson, S., Arzate, H., Narayanan, A.S., Page, R.C. J. Dent. Res. (1991) [Pubmed]
  27. Mitogenic activity of cementum components to gingival fibroblasts. Miki, Y., Narayanan, A.S., Page, R.C. J. Dent. Res. (1987) [Pubmed]
  28. Identification of a novel isoform of mouse dentin matrix protein 1: spatial expression in mineralized tissues. MacDougall, M., Gu, T.T., Luan, X., Simmons, D., Chen, J. J. Bone Miner. Res. (1998) [Pubmed]
  29. Expression patterns of bone morphogenetic proteins (Bmps) in the developing mouse tooth suggest roles in morphogenesis and cell differentiation. Aberg, T., Wozney, J., Thesleff, I. Dev. Dyn. (1997) [Pubmed]
  30. Cementoblast gene expression is regulated by Porphyromonas gingivalis lipopolysaccharide partially via toll-like receptor-4/MD-2. Nociti, F.H., Foster, B.L., Barros, S.P., Darveau, R.P., Somerman, M.J. J. Dent. Res. (2004) [Pubmed]
  31. Expression of bone morphogenetic proteins and Msx genes during root formation. Yamashiro, T., Tummers, M., Thesleff, I. J. Dent. Res. (2003) [Pubmed]
  32. Characterization of a collagenous cementum-derived attachment protein. Wu, D., Ikezawa, K., Parker, T., Saito, M., Narayanan, A.S. J. Bone Miner. Res. (1996) [Pubmed]
  33. Isolation and partial characterization of mitogenic factors from cementum. Nakae, H., Narayanan, A.S., Raines, E., Page, R.C. Biochemistry (1991) [Pubmed]
  34. Bovine tooth-derived bone morphogenetic protein. Kawai, T., Urist, M.R. J. Dent. Res. (1989) [Pubmed]
  35. Immunolocation of proteoglycans and bone-related noncollagenous glycoproteins in developing acellular cementum of rat molars. Yamamoto, T., Domon, T., Takahashi, S., Arambawatta, A.K., Wakita, M. Cell Tissue Res. (2004) [Pubmed]
  36. Defining the roots of cementum formation. Popowics, T., Foster, B.L., Swanson, E.C., Fong, H., Somerman, M.J. Cells Tissues Organs (Print) (2005) [Pubmed]
 
WikiGenes - Universities