The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Haploidy


High impact information on Haploidy


Chemical compound and disease context of Haploidy

  • Bacillus subtilis strains possessing the trpE30 marker (splitting of the trpE locus and a non-tandem duplication of chromosome segment Ib: purB-tre) when transformed or transduced to tryptophan independence mainly give rise to haploid cells with the genetic structure of strain 168 [11].

Biological context of Haploidy

  • beta 2-Microglobulin is encoded by a single gene per haploid genome in the mouse [12].
  • If such spores contain chimeric mammalian/yeast RAS genes or even the mammalian H-ras gene under the control of the galactose-inducible GAL10 promoter, they will germinate in the presence of galactose and produce viable haploid progeny dependent on galactose for continued growth and viability [13].
  • In contrast with the dispersed organization of tubulin genes in other organisms, trypanosome alpha- and beta-tubulin genes are physically linked and clustered in tandem repeats of approximately 13-17 copies per haploid genome of alternating alpha- and beta-tubulin sequences [14].
  • Transcription of the HO gene is start-dependent and restricted to the late G1/early S phase of haploid mother cells [15].
  • The signal transduction pathway that mediates the response of haploid yeast cells to peptide mating pheromones involves several components including the protein kinases STE7 and STE11 [16].

Anatomical context of Haploidy

  • Disruption of T cell signaling networks and development by Grb2 haploid insufficiency [17].
  • We show that a haploid dose of GATA-2 severely reduces production and expansion of HSCs specifically in the aorta-gonad-mesonephros region (which autonomously generates the first HSCs), whereas quantitative reduction of HSCs is minimal or unchanged in yolk sac, fetal liver, and adult bone marrow [18].
  • Besides the brain, transcripts for Lis1, alpha1, and alpha2 are localized to meiotic and early haploid germ cells [19].
  • As a result, the aquaporin null cells were more flocculent and more efficient at haploid invasive growth [20].
  • Using a Drosophila haploid cell line for transient expression, we found that trithorax or Polycomb can function independently through this upstream fragment to activate or repress the Ultrabithorax promoter, respectively [21].

Associations of Haploidy with chemical compounds

  • Cytogenetic analysis of 26 PTC and 5 FTC showed clonal abnormalities in 9 and included -Y, +5, or inv(10)(q11.2q21.2) in PTC, and -Y or near haploidy in FTC [22].
  • The gene encoding neuraxin appears to be unique in the haploid rat genome and conserved in higher vertebrates [23].
  • MMS survival of haploid cdc2-2 strains is lower than wild type at the permissive growth temperature of 20 degrees C. Survival is further decreased relative to wild type by treatment with MMS at 36 degrees C, a nonpermissive temperature for growth of mutant cells [24].
  • Yeast strains deleted for TEP1 exhibit essentially no phenotype in haploids; however, diploids exhibit resistance to the phosphatidylinositol-3-phosphate kinase inhibitor wortmannin and to lithium ions [25].
  • Disruption of the MDH2 gene in a haploid strain also containing a disruption in the chromosomal MDH1 gene encoding the mitochondrial isozyme produced a strain unable to grow with acetate but capable of growth on rich medium with glycerol as a carbon source [26].

Gene context of Haploidy

  • Deleting NEJ1 reduces NHEJ 100-fold in MATa or MAT alpha haploids [27].
  • The function of the PMA1 gene is essential because a null mutation is lethal in haploid cells [28].
  • One such gene, AXL2, has been characterized in detail. axl2 cells are defective in bud site selection in haploid cells and bud in a bipolar fashion [29].
  • A pol3-01/pol3-01 pms1/pms1 diploid was viable and displayed an estimated URA3 relative mutation rate of 2 x 10(4), which we calculate to be catastrophically high in a haploid [30].
  • These results are consistent with the idea that STE2 encodes an alpha-factor receptor and STE3 encodes an a-factor receptor, and suggest that both alpha- and a-factors may generate an exchangeable signal(s) within haploid cells [31].

Analytical, diagnostic and therapeutic context of Haploidy


  1. A dominant truncation allele identifies a gene, STE20, that encodes a putative protein kinase necessary for mating in Saccharomyces cerevisiae. Ramer, S.W., Davis, R.W. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  2. Isolation of a cDNA clone for human antithrombin III. Prochownik, E.V., Markham, A.F., Orkin, S.H. J. Biol. Chem. (1983) [Pubmed]
  3. Identification of nucleotide sequences which may encode the oncogenic capacity of avian retrovirus MC29. Sheiness, D., Fanshier, L., Bishop, J.M. J. Virol. (1978) [Pubmed]
  4. Genetic recombination in Nocardia mediterranei. Schupp, T., Hutter, R., Hopwood, D.A. J. Bacteriol. (1975) [Pubmed]
  5. Effect of mutagens, chemotherapeutic agents and defects in DNA repair genes on recombination in F' partial diploid Escherichia coli. Norin, A.J., Goldschmidt, E.P. Mutat. Res. (1979) [Pubmed]
  6. The application of molecular genetic approaches to the study of human evolution. Cavalli-Sforza, L.L., Feldman, M.W. Nat. Genet. (2003) [Pubmed]
  7. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases. Gangloff, S., Soustelle, C., Fabre, F. Nat. Genet. (2000) [Pubmed]
  8. Degradation signal masking by heterodimerization of MATalpha2 and MATa1 blocks their mutual destruction by the ubiquitin-proteasome pathway. Johnson, P.R., Swanson, R., Rakhilina, L., Hochstrasser, M. Cell (1998) [Pubmed]
  9. Transmeiotic differentiation of male germ cells in culture. Rassoulzadegan, M., Paquis-Flucklinger, V., Bertino, B., Sage, J., Jasin, M., Miyagawa, K., van Heyningen, V., Besmer, P., Cuzin, F. Cell (1993) [Pubmed]
  10. The STE4 and STE18 genes of yeast encode potential beta and gamma subunits of the mating factor receptor-coupled G protein. Whiteway, M., Hougan, L., Dignard, D., Thomas, D.Y., Bell, L., Saari, G.C., Grant, F.J., O'Hara, P., MacKay, V.L. Cell (1989) [Pubmed]
  11. Bacillus subtilis strains carrying two non-tandem duplications of the trpE-ilvA and the purB-tre regions of the chromosome. Schneider, A.M., Anagnostopoulos, C. J. Gen. Microbiol. (1983) [Pubmed]
  12. Structure of wild-type and mutant mouse beta 2-microglobulin genes. Parnes, J.R., Seidman, J.G. Cell (1982) [Pubmed]
  13. Functional homology of mammalian and yeast RAS genes. Kataoka, T., Powers, S., Cameron, S., Fasano, O., Goldfarb, M., Broach, J., Wigler, M. Cell (1985) [Pubmed]
  14. Tubulin genes are tandemly linked and clustered in the genome of trypanosoma brucei. Thomashow, L.S., Milhausen, M., Rutter, W.J., Agabian, N. Cell (1983) [Pubmed]
  15. Cell cycle-specific expression of the SWI4 transcription factor is required for the cell cycle regulation of HO transcription. Breeden, L., Mikesell, G.E. Genes Dev. (1991) [Pubmed]
  16. Order of action of components in the yeast pheromone response pathway revealed with a dominant allele of the STE11 kinase and the multiple phosphorylation of the STE7 kinase. Cairns, B.R., Ramer, S.W., Kornberg, R.D. Genes Dev. (1992) [Pubmed]
  17. Disruption of T cell signaling networks and development by Grb2 haploid insufficiency. Gong, Q., Cheng, A.M., Akk, A.M., Alberola-Ila, J., Gong, G., Pawson, T., Chan, A.C. Nat. Immunol. (2001) [Pubmed]
  18. GATA-2 plays two functionally distinct roles during the ontogeny of hematopoietic stem cells. Ling, K.W., Ottersbach, K., van Hamburg, J.P., Oziemlak, A., Tsai, F.Y., Orkin, S.H., Ploemacher, R., Hendriks, R.W., Dzierzak, E. J. Exp. Med. (2004) [Pubmed]
  19. Previously uncharacterized roles of platelet-activating factor acetylhydrolase 1b complex in mouse spermatogenesis. Yan, W., Assadi, A.H., Wynshaw-Boris, A., Eichele, G., Matzuk, M.M., Clark, G.D. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  20. Aquaporins in Saccharomyces: Characterization of a second functional water channel protein. Carbrey, J.M., Bonhivers, M., Boeke, J.D., Agre, P. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  21. Functional reconstruction of trans regulation of the Ultrabithorax promoter by the products of two antagonistic genes, trithorax and Polycomb. Chang, Y.L., King, B.O., O'Connor, M., Mazo, A., Huang, D.H. Mol. Cell. Biol. (1995) [Pubmed]
  22. Cytogenetic and molecular genetic studies of follicular and papillary thyroid cancers. Herrmann, M.A., Hay, I.D., Bartelt, D.H., Ritland, S.R., Dahl, R.J., Grant, C.S., Jenkins, R.B. J. Clin. Invest. (1991) [Pubmed]
  23. Neuraxin, a novel putative structural protein of the rat central nervous system that is immunologically related to microtubule-associated protein 5. Rienitz, A., Grenningloh, G., Hermans-Borgmeyer, I., Kirsch, J., Littauer, U.Z., Prior, P., Gundelfinger, E.D., Schmitt, B., Betz, H. EMBO J. (1989) [Pubmed]
  24. DNA polymerase delta is required for base excision repair of DNA methylation damage in Saccharomyces cerevisiae. Blank, A., Kim, B., Loeb, L.A. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  25. TEP1, the yeast homolog of the human tumor suppressor gene PTEN/MMAC1/TEP1, is linked to the phosphatidylinositol pathway and plays a role in the developmental process of sporulation. Heymont, J., Berenfeld, L., Collins, J., Kaganovich, A., Maynes, B., Moulin, A., Ratskovskaya, I., Poon, P.P., Johnston, G.C., Kamenetsky, M., DeSilva, J., Sun, H., Petsko, G.A., Engebrecht, J. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  26. Isolation, nucleotide sequence analysis, and disruption of the MDH2 gene from Saccharomyces cerevisiae: evidence for three isozymes of yeast malate dehydrogenase. Minard, K.I., McAlister-Henn, L. Mol. Cell. Biol. (1991) [Pubmed]
  27. NEJ1 controls non-homologous end joining in Saccharomyces cerevisiae. Valencia, M., Bentele, M., Vaze, M.B., Herrmann, G., Kraus, E., Lee, S.E., Schär, P., Haber, J.E. Nature (2001) [Pubmed]
  28. Yeast plasma membrane ATPase is essential for growth and has homology with (Na+ + K+), K+- and Ca2+-ATPases. Serrano, R., Kielland-Brandt, M.C., Fink, G.R. Nature (1986) [Pubmed]
  29. Selection of axial growth sites in yeast requires Axl2p, a novel plasma membrane glycoprotein. Roemer, T., Madden, K., Chang, J., Snyder, M. Genes Dev. (1996) [Pubmed]
  30. Pathway correcting DNA replication errors in Saccharomyces cerevisiae. Morrison, A., Johnson, A.L., Johnston, L.H., Sugino, A. EMBO J. (1993) [Pubmed]
  31. Common signal transduction system shared by STE2 and STE3 in haploid cells of Saccharomyces cerevisiae: autocrine cell-cycle arrest results from forced expression of STE2. Nakayama, N., Miyajima, A., Arai, K. EMBO J. (1987) [Pubmed]
  32. Molecular cloning and sequence analysis of a haploid expressed gene encoding t complex polypeptide 1. Willison, K.R., Dudley, K., Potter, J. Cell (1986) [Pubmed]
  33. J chain is encoded by a single gene unlinked to other immunoglobulin structural genes. Yagi, M., D'Eustachio, P., Ruddle, F.H., Koshland, M.E. J. Exp. Med. (1982) [Pubmed]
  34. Cloning and characterization of a second complementary DNA for human tryptase. Miller, J.S., Moxley, G., Schwartz, L.B. J. Clin. Invest. (1990) [Pubmed]
  35. Cloning and tissue-specific expression of mouse macrophage colony-stimulating factor mRNA. Rajavashisth, T.B., Eng, R., Shadduck, R.K., Waheed, A., Ben-Avram, C.M., Shively, J.E., Lusis, A.J. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  36. Mutations in the gal83 glycogen-binding domain activate the snf1/gal83 kinase pathway by a glycogen-independent mechanism. Wiatrowski, H.A., Van Denderen, B.J., Berkey, C.D., Kemp, B.E., Stapleton, D., Carlson, M. Mol. Cell. Biol. (2004) [Pubmed]
WikiGenes - Universities