The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

T-Lymphocytes

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of T-Lymphocytes

 

Psychiatry related information on T-Lymphocytes

  • This finding is most readily accommodated within the altered self concept (postulating that T cells are specific for virus-modified self structures) but cannot exclude the possibility of a physiological interaction mechanism being responsible for the apparent H-2 restriction of virus-specific cytotoxic T cells [6].
  • This report analyzes the role of natural killer T cells, Fas, and TNF-alpha in a model of chronic alcohol consumption [7].
  • Locomotor activity of T cells with receptors for IgM and IgG, T cells without receptors for IgM or IgG, and T and non-T cells from human peripheral blood and human tonsils towards the chemoattractant casein was examined in modified Boyden chambers [8].
  • Using this new tool of memory T cell analysis, we demonstrate that CD8(+) T cell priming in the absence of T cell help or CD40L specifically alters the generation of the effector memory T cell subset, which appears to be crucial for immediate memory responses and long-term maintenance of effective protective immunity [9].
  • After construction of a fusion protein consisting of Id and CTLA-4 (Id-CTLA4), mice immunized with the fusion protein induced high titers of Id-specific antibody and T-cell proliferative responses without adjuvants and were protected from lethal tumor challenge [10].
 

High impact information on T-Lymphocytes

  • In addition, the PD-1:PD-L1/PD-L2 pathway plays a critical role in regulating T cell activation and tolerance [11].
  • The new CD28 families members, ICOS, PD-1, and BTLA, are inducibly expressed on T cells, and they have important roles in regulating previously activated T cells [11].
  • Three members of this family, Itk, Rlk, and Tec, are expressed in T cells and activated in response to T cell receptor (TCR) engagement [12].
  • Tec family kinases in T lymphocyte development and function [12].
  • Several members of the tumor necrosis factor receptor (TNFR) family function after initial T cell activation to sustain T cell responses [13].
 

Chemical compound and disease context of T-Lymphocytes

 

Biological context of T-Lymphocytes

 

Anatomical context of T-Lymphocytes

  • Inflammatory signals induce chemokine receptors on activated T cells that direct their migration into the B cell areas to interact with antigen-specific B cells [23].
  • The arrest in lymphocyte development is not absolute; some young adult scid mice are "leaky" and generate a few clones of functional B and T cells [24].
  • This review summarizes our current understanding of the host immune response, with emphasis on the roles of macrophages, T cells, and the cytokine/chemokine network in engendering protective immunity [25].
  • CD81 can also affect cognate B-T cell interactions because anti-CD81 increases IL-4 synthesis by T cells responding to antigen presented by B cells but not by monocytes [26].
  • Immune, type II, or gamma-interferon (IFN-gamma) is secreted by thymus-derived (T) cells under certain conditions of activation and by natural killer (NK) cells [27].
 

Associations of T-Lymphocytes with chemical compounds

  • The use of molecular genetic probes and monoclonal T cells demonstrates the functional importance of both the HLA-DRAB1 and -DRAB3 gene products in T-cell recognition of allergen [28].
  • Access to this problematic area has been greatly enhanced by the recent development of tetrameric complexes of MHC class I glycoprotein + peptide (tetramers) for the direct staining of freshly isolated, antigen-specific CD8(+ )T cells [29].
  • As targets for the immunosuppressive drugs cyclosporin A and FK506, transcription factors of the NFAT (nuclear factor of activated T cells) family have been the focus of much attention [30].
  • The control of CD4+ memory T cells is more mysterious, with roles reported for IL-7 and/or contact via the TCR [31].
  • Elevation of intracellular free Ca(2+) is one of the key triggering signals for T-cell activation by antigen [32].
 

Gene context of T-Lymphocytes

  • The role of the CD28 receptor during T cell responses to antigen [33].
  • Major progress has been made in the understanding of chemokine actions on T lymphocytes that respond to several CC chemokines but also to IP10 and Mig, two CXC chemokines that selectively attract T cells via a novel receptor [34].
  • Engagement of CTLA-4 (CD152) by the same B7-1 or B7-2 ligands results in attenuation of T cells responses [35].
  • After activation through CD40 the centrocytes increase their surface Ig and acquire characteristics of memory and processing of antigen held on FDC and its presentation to T cells that can be induced to express CD40 ligand at the point of cognate interaction [36].
  • However, CD81-deficient mice express normal numbers and subsets of T cells [26].
 

Analytical, diagnostic and therapeutic context of T-Lymphocytes

References

  1. Human T cell leukemia virus type I (HTLV-I) and human diseases. Uchiyama, T. Annu. Rev. Immunol. (1997) [Pubmed]
  2. Protein kinase C(theta) in T cell activation. Isakov, N., Altman, A. Annu. Rev. Immunol. (2002) [Pubmed]
  3. The NOD mouse: a model of immune dysregulation. Anderson, M.S., Bluestone, J.A. Annu. Rev. Immunol. (2005) [Pubmed]
  4. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Inohara, n.u.l.l., Chamaillard, n.u.l.l., McDonald, C., Nuñez, G. Annu. Rev. Biochem. (2005) [Pubmed]
  5. A randomized controlled trial of a reduced daily dose of zidovudine in patients with the acquired immunodeficiency syndrome. The AIDS Clinical Trials Group. Fischl, M.A., Parker, C.B., Pettinelli, C., Wulfsohn, M., Hirsch, M.S., Collier, A.C., Antoniskis, D., Ho, M., Richman, D.D., Fuchs, E. N. Engl. J. Med. (1990) [Pubmed]
  6. H-2 compatibility requirement for virus-specific T-cell-mediated cytolysis. The H-2K structure involved is coded by a single cistron defined by H-2Kb mutant mice. Zinkernagel, R.M. J. Exp. Med. (1976) [Pubmed]
  7. Activated natural killer T cells induce liver injury by Fas and tumor necrosis factor-alpha during alcohol consumption. Minagawa, M., Deng, Q., Liu, Z.X., Tsukamoto, H., Dennert, G. Gastroenterology (2004) [Pubmed]
  8. Heterogeneity of locomotion in human T cell subsets. Parrott, D.M., Good, R.A., O'Neill, G.J., Gupta, S. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  9. Selective expression of IL-7 receptor on memory T cells identifies early CD40L-dependent generation of distinct CD8+ memory T cell subsets. Huster, K.M., Busch, V., Schiemann, M., Linkemann, K., Kerksiek, K.M., Wagner, H., Busch, D.H. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  10. Enhanced antitumor immunity by fusion of CTLA-4 to a self tumor antigen. Huang, T.H., Wu, P.Y., Lee, C.N., Huang, H.I., Hsieh, S.L., Kung, J., Tao, M.H. Blood (2000) [Pubmed]
  11. The B7 family revisited. Greenwald, R.J., Freeman, G.J., Sharpe, A.H. Annu. Rev. Immunol. (2005) [Pubmed]
  12. Tec family kinases in T lymphocyte development and function. Berg, L.J., Finkelstein, L.D., Lucas, J.A., Schwartzberg, P.L. Annu. Rev. Immunol. (2005) [Pubmed]
  13. TNF/TNFR family members in costimulation of T cell responses. Watts, T.H. Annu. Rev. Immunol. (2005) [Pubmed]
  14. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Bottini, N., Musumeci, L., Alonso, A., Rahmouni, S., Nika, K., Rostamkhani, M., MacMurray, J., Meloni, G.F., Lucarelli, P., Pellecchia, M., Eisenbarth, G.S., Comings, D., Mustelin, T. Nat. Genet. (2004) [Pubmed]
  15. HIV infection does not require endocytosis of its receptor, CD4. Maddon, P.J., McDougal, J.S., Clapham, P.R., Dalgleish, A.G., Jamal, S., Weiss, R.A., Axel, R. Cell (1988) [Pubmed]
  16. Bone marrow transplantation for patients with chronic myeloid leukemia. Goldman, J.M., Apperley, J.F., Jones, L., Marcus, R., Goolden, A.W., Batchelor, R., Hale, G., Waldmann, H., Reid, C.D., Hows, J. N. Engl. J. Med. (1986) [Pubmed]
  17. Clinical and immunologic effects of monthly administration of intravenous cyclophosphamide in severe systemic lupus erythematosus. McCune, W.J., Golbus, J., Zeldes, W., Bohlke, P., Dunne, R., Fox, D.A. N. Engl. J. Med. (1988) [Pubmed]
  18. Effect of levamisole on E-rosette-forming cells in vivo and in vitro in Hodgkin's disease. Ramot, B., Biniaminov, M., Shoham, C., Rosenthal, E. N. Engl. J. Med. (1976) [Pubmed]
  19. The role of protein tyrosine kinases and protein tyrosine phosphatases in T cell antigen receptor signal transduction. Chan, A.C., Desai, D.M., Weiss, A. Annu. Rev. Immunol. (1994) [Pubmed]
  20. CD1: antigen presentation and T cell function. Brigl, M., Brenner, M.B. Annu. Rev. Immunol. (2004) [Pubmed]
  21. Immunopharmacology of rapamycin. Abraham, R.T., Wiederrecht, G.J. Annu. Rev. Immunol. (1996) [Pubmed]
  22. The role of the Ikaros gene in lymphocyte development and homeostasis. Georgopoulos, K., Winandy, S., Avitahl, N. Annu. Rev. Immunol. (1997) [Pubmed]
  23. In vivo activation of antigen-specific CD4 T cells. Jenkins, M.K., Khoruts, A., Ingulli, E., Mueller, D.L., McSorley, S.J., Reinhardt, R.L., Itano, A., Pape, K.A. Annu. Rev. Immunol. (2001) [Pubmed]
  24. The SCID mouse mutant: definition, characterization, and potential uses. Bosma, M.J., Carroll, A.M. Annu. Rev. Immunol. (1991) [Pubmed]
  25. Immunology of tuberculosis. Flynn, J.L., Chan, J. Annu. Rev. Immunol. (2001) [Pubmed]
  26. CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system. Levy, S., Todd, S.C., Maecker, H.T. Annu. Rev. Immunol. (1998) [Pubmed]
  27. Cellular responses to interferon-gamma. Boehm, U., Klamp, T., Groot, M., Howard, J.C. Annu. Rev. Immunol. (1997) [Pubmed]
  28. The specificity and regulation of T-cell responsiveness to allergens. O'Hehir, R.E., Garman, R.D., Greenstein, J.L., Lamb, J.R. Annu. Rev. Immunol. (1991) [Pubmed]
  29. Accessing complexity: the dynamics of virus-specific T cell responses. Doherty, P.C., Christensen, J.P. Annu. Rev. Immunol. (2000) [Pubmed]
  30. Transcription factors of the NFAT family: regulation and function. Rao, A., Luo, C., Hogan, P.G. Annu. Rev. Immunol. (1997) [Pubmed]
  31. Control of T cell viability. Marrack, P., Kappler, J. Annu. Rev. Immunol. (2004) [Pubmed]
  32. Calcium signaling mechanisms in T lymphocytes. Lewis, R.S. Annu. Rev. Immunol. (2001) [Pubmed]
  33. The role of the CD28 receptor during T cell responses to antigen. Linsley, P.S., Ledbetter, J.A. Annu. Rev. Immunol. (1993) [Pubmed]
  34. Human chemokines: an update. Baggiolini, M., Dewald, B., Moser, B. Annu. Rev. Immunol. (1997) [Pubmed]
  35. The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Carreno, B.M., Collins, M. Annu. Rev. Immunol. (2002) [Pubmed]
  36. Germinal centers. MacLennan, I.C. Annu. Rev. Immunol. (1994) [Pubmed]
  37. Immunological aspects of demyelinating diseases. Martin, R., McFarland, H.F., McFarlin, D.E. Annu. Rev. Immunol. (1992) [Pubmed]
  38. Direct evidence for the existence of nominal antigen binding sites on T cell surface Ti alpha-beta heterodimers of MHC-restricted T cell clones. Siliciano, R.F., Hemesath, T.J., Pratt, J.C., Dintzis, R.Z., Dintzis, H.M., Acuto, O., Shin, H.S., Reinherz, E.L. Cell (1986) [Pubmed]
  39. Acquired CD40-ligand deficiency in chronic lymphocytic leukemia. Cantwell, M., Hua, T., Pappas, J., Kipps, T.J. Nat. Med. (1997) [Pubmed]
  40. Suppressive vaccination with DNA encoding a variable region gene of the T-cell receptor prevents autoimmune encephalomyelitis and activates Th2 immunity. Waisman, A., Ruiz, P.J., Hirschberg, D.L., Gelman, A., Oksenberg, J.R., Brocke, S., Mor, F., Cohen, I.R., Steinman, L. Nat. Med. (1996) [Pubmed]
  41. Adoptive transfer of minor histocompatibility antigen-specific T lymphocytes eradicates leukemia cells without causing graft-versus-host disease. Fontaine, P., Roy-Proulx, G., Knafo, L., Baron, C., Roy, D.C., Perreault, C. Nat. Med. (2001) [Pubmed]
 
WikiGenes - Universities