The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Regulon

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Regulon

 

High impact information on Regulon

  • Here, we show that two potent negative regulators of Start, Sfp1 and Sch9, are activators of the ribosomal protein (RP) and ribosome biogenesis (Ribi) regulons, the transcriptional programs that dictate ribosome synthesis rate in accord with environmental and intracellular conditions [6].
  • We propose that the sigma E regulon is involved in processes that occur in extracytoplasmic compartments and that these two heat-inducible regulons may have distinct but complementary roles of monitoring the state of proteins in the cytoplasm (sigma 32) and outer membrane (sigma E) [7].
  • We have shown previously that RAD9 also controls the transcriptional induction of a DNA damage regulon (DDR) [8].
  • The presence and versatility of transport systems encoded by beta-ketoadipate pathway regulons is just beginning to be explored in various microbial groups [9].
  • Acetosyringone (AS) induced the expression of all known members of the vir regulons, as well as a small number of additional genes [10].
 

Chemical compound and disease context of Regulon

 

Biological context of Regulon

 

Anatomical context of Regulon

  • This study shows that exposure of S. typhimurium to sublethal concentrations of CAMP activates the PhoP/PhoQ and RpoS virulence regulons, while repressing the transcription of genes required for flagella synthesis and the invasion-associated type III secretion system [20].
 

Associations of Regulon with chemical compounds

  • Many of these genes were members of the cAMP-cAMP receptor protein (CRP) and guanosine tetraphosphate (ppGpp) regulons [21].
  • Rather, the improvement in glucose scavenging involves induction of genes in 2 distinct regulons (mgl/gal and mal/lamB) through synthesis of 2 different endogenous inducer molecules (galactose, maltotriose) [22].
  • We found that the absence of heme, due to a deletion in the gene that encodes delta-aminolevulinic acid synthase (HEM1), resulted in decreased transcription of genes belonging to both the iron and copper regulons, but not the zinc regulon [23].
  • Our findings provide further evidence for important functions of the PbuE protein, such as acting as a pump that lowers the purine base pool and affects the expression of the G-box and PurR regulons, including pbuE itself, and as a pump involved in protection against toxic purine base analogs [24].
  • Thus, we conclude that the lowered concentration of cAMP in cyaA mutants induces both sigma E and Cpx extracytoplasmic stress regulons and thereby rescues the degP temperature-sensitive phenotype [25].
 

Gene context of Regulon

  • Transcript profiling revealed minimal overlap between the Ssn6 and Tup1 regulons [26].
  • We examined the in vivo expression of up to 16 genes encoding for components of both glutaredoxin and thioredoxin systems and for members of the OxyR and SoxRS regulons [27].
  • Mutations in the sirA orthologs of Escherichia coli, Vibrio cholerae, Pseudomonas fluorescens, and Pseudomonas aeruginosa result in defects in either motility or motility gene regulation, suggesting that control of flagellar regulons may be an evolutionarily conserved function of sirA orthologs [28].
  • Our comparison of the Gcn4 and Gcn2 regulons by transcript profiling reinforces the view that Gcn2 contributes to, but is not essential for, the activation of general amino acid control in C. albicans [29].
  • Heat and various inhibitory chemicals were tested in Escherichia coli for the ability to cause accumulation of adenylylated nucleotides and to induce proteins of the heat shock (htpR-controlled), the oxidation stress (oxyR-controlled), and the SOS (lexA-controlled) regulons [30].

References

  1. Genetic control of the bacterial flagellar regulon. Jones, C.J., Aizawa, S. Curr. Opin. Genet. Dev. (1991) [Pubmed]
  2. Computer analysis of transcription regulatory patterns in completely sequenced bacterial genomes. Mironov, A.A., Koonin, E.V., Roytberg, M.A., Gelfand, M.S. Nucleic Acids Res. (1999) [Pubmed]
  3. The global transcriptional response of Bacillus subtilis to manganese involves the MntR, Fur, TnrA and sigmaB regulons. Guedon, E., Moore, C.M., Que, Q., Wang, T., Ye, R.W., Helmann, J.D. Mol. Microbiol. (2003) [Pubmed]
  4. Structure of the maltodextrin-uptake locus of Streptococcus pneumoniae. Correlation to the Escherichia coli maltose regulon. Puyet, A., Espinosa, M. J. Mol. Biol. (1993) [Pubmed]
  5. Combined effects of blood and temperature shift on Borrelia burgdorferi gene expression as determined by whole genome DNA array. Tokarz, R., Anderton, J.M., Katona, L.I., Benach, J.L. Infect. Immun. (2004) [Pubmed]
  6. A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Jorgensen, P., Rupes, I., Sharom, J.R., Schneper, L., Broach, J.R., Tyers, M. Genes Dev. (2004) [Pubmed]
  7. The activity of sigma E, an Escherichia coli heat-inducible sigma-factor, is modulated by expression of outer membrane proteins. Mecsas, J., Rouviere, P.E., Erickson, J.W., Donohue, T.J., Gross, C.A. Genes Dev. (1993) [Pubmed]
  8. RAD9 and RAD24 define two additive, interacting branches of the DNA damage checkpoint pathway in budding yeast normally required for Rad53 modification and activation. de la Torre-Ruiz, M.A., Green, C.M., Lowndes, N.F. EMBO J. (1998) [Pubmed]
  9. The beta-ketoadipate pathway and the biology of self-identity. Harwood, C.S., Parales, R.E. Annu. Rev. Microbiol. (1996) [Pubmed]
  10. VirA and VirG activate the Ti plasmid repABC operon, elevating plasmid copy number in response to wound-released chemical signals. Cho, H., Winans, S.C. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  11. In vitro interactions of CysB protein with the cysK and cysJIH promoter regions of Salmonella typhimurium. Monroe, R.S., Ostrowski, J., Hryniewicz, M.M., Kredich, N.M. J. Bacteriol. (1990) [Pubmed]
  12. The cysP promoter of Salmonella typhimurium: characterization of two binding sites for CysB protein, studies of in vivo transcription initiation, and demonstration of the anti-inducer effects of thiosulfate. Hryniewicz, M.M., Kredich, N.M. J. Bacteriol. (1991) [Pubmed]
  13. Comparative genomic analysis of dha regulon and related genes for anaerobic glycerol metabolism in bacteria. Sun, J., van den Heuvel, J., Soucaille, P., Qu, Y., Zeng, A.P. Biotechnol. Prog. (2003) [Pubmed]
  14. Computational analysis of the transcriptional regulation of pentose utilization systems in the gamma subdivision of Proteobacteria. Laikova, O.N., Mironov, A.A., Gelfand, M.S. FEMS Microbiol. Lett. (2001) [Pubmed]
  15. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. Lee, J., Godon, C., Lagniel, G., Spector, D., Garin, J., Labarre, J., Toledano, M.B. J. Biol. Chem. (1999) [Pubmed]
  16. Antitermination of transcription of catabolic operons. Rutberg, B. Mol. Microbiol. (1997) [Pubmed]
  17. Molecular analysis of two ScrR repressors and of a ScrR-FruR hybrid repressor for sucrose and D-fructose specific regulons from enteric bacteria. Jahreis, K., Lengeler, J.W. Mol. Microbiol. (1993) [Pubmed]
  18. Asymmetric allosteric activation of the symmetric ArgR hexamer. Jin, L., Xue, W.F., Fukayama, J.W., Yetter, J., Pickering, M., Carey, J. J. Mol. Biol. (2005) [Pubmed]
  19. Mutational analysis of the Tup1 general repressor of yeast. Carrico, P.M., Zitomer, R.S. Genetics (1998) [Pubmed]
  20. Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Bader, M.W., Navarre, W.W., Shiau, W., Nikaido, H., Frye, J.G., McClelland, M., Fang, F.C., Miller, S.I. Mol. Microbiol. (2003) [Pubmed]
  21. Parallel changes in gene expression after 20,000 generations of evolution in Escherichiacoli. Cooper, T.F., Rozen, D.E., Lenski, R.E. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  22. Adaptation to life at micromolar nutrient levels: the regulation of Escherichia coli glucose transport by endoinduction and cAMP. Ferenci, T. FEMS Microbiol. Rev. (1996) [Pubmed]
  23. Inhibition of heme biosynthesis prevents transcription of iron uptake genes in yeast. Crisp, R.J., Pollington, A., Galea, C., Jaron, S., Yamaguchi-Iwai, Y., Kaplan, J. J. Biol. Chem. (2003) [Pubmed]
  24. The purine efflux pump PbuE in Bacillus subtilis modulates expression of the PurR and G-box (XptR) regulons by adjusting the purine base pool size. Nygaard, P., Saxild, H.H. J. Bacteriol. (2005) [Pubmed]
  25. Adenylate cyclase mutations rescue the degP temperature-sensitive phenotype and induce the sigma E and Cpx extracytoplasmic stress regulons in Escherichia coli. Strozen, T.G., Langen, G.R., Howard, S.P. J. Bacteriol. (2005) [Pubmed]
  26. Global roles of Ssn6 in Tup1- and Nrg1-dependent gene regulation in the fungal pathogen, Candida albicans. García-Sánchez, S., Mavor, A.L., Russell, C.L., Argimon, S., Dennison, P., Enjalbert, B., Brown, A.J. Mol. Biol. Cell (2005) [Pubmed]
  27. Transcriptional regulation of glutaredoxin and thioredoxin pathways and related enzymes in response to oxidative stress. Prieto-Alamo, M.J., Jurado, J., Gallardo-Madueno, R., Monje-Casas, F., Holmgren, A., Pueyo, C. J. Biol. Chem. (2000) [Pubmed]
  28. SirA orthologs affect both motility and virulence. Goodier, R.I., Ahmer, B.M. J. Bacteriol. (2001) [Pubmed]
  29. Global role of the protein kinase Gcn2 in the human pathogen Candida albicans. Tournu, H., Tripathi, G., Bertram, G., Macaskill, S., Mavor, A., Walker, L., Odds, F.C., Gow, N.A., Brown, A.J. Eukaryotic Cell (2005) [Pubmed]
  30. Differential induction of heat shock, SOS, and oxidation stress regulons and accumulation of nucleotides in Escherichia coli. VanBogelen, R.A., Kelley, P.M., Neidhardt, F.C. J. Bacteriol. (1987) [Pubmed]
 
WikiGenes - Universities