The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Presynaptic Terminals

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Presynaptic Terminals

  • We have developed a Drosophila fragile X syndrome model using loss-of-function mutants and overexpression of the FMR1 homolog (dfxr). dfxr nulls display enlarged synaptic terminals, whereas neuronal overexpression results in fewer and larger synaptic boutons [1].
  • We demonstrate a unique postsynaptic receptor microheterogeneity on chick parasympathetic ciliary ganglion neurons-under one presynaptic terminal, nAChRs and glycine receptors formed separate but proximal clusters [2].
  • Dopamine acetylcholine imbalance in Parkinson's disease. Possible regenerative overgrowth of cholinergic axon terminals [3].
  • Dehydration evokes a massive increase in the regulated release of VP from magnocellular neuron axon terminals in the posterior pituitary, which is accompanied by a plethora of changes in the morphology, electrophysiological properties, and biosynthetic and secretory activity of the HNS [4].
  • The inhibition of GABA release by baclofen was abolished by a pretreatment with pertussis toxin (PTX), whereas the inhibition of whole-cell calcium currents by baclofen was only partially depressed by PTX, suggesting that G-protein mechanisms involved in GABAB receptor modulation at the soma and axon terminal may not be identical [5].
 

Psychiatry related information on Presynaptic Terminals

 

High impact information on Presynaptic Terminals

  • Recent physiological, pharmacological, and high-resolution anatomical studies provided evidence that the major physiological effect of cannabinoids is the regulation of neurotransmitter release via activation of presynaptic CB1 receptors located on distinct types of axon terminals throughout the brain [8].
  • Loss of vha100-1 leads to vesicle accumulation in synaptic terminals, suggesting a deficit in release [9].
  • We show that Wg and its receptor are expressed at glutamatergic NMJs, and that Wg is secreted by synaptic boutons [10].
  • The results show that semaphorin II can function in vivo as a selective target-derived signal that inhibits the formation of specific synaptic terminal arbors [11].
  • The detection of odorant receptor mRNAs within the axon terminals of sensory neurons has permitted us to ask whether neurons expressing a given receptor project their axons to common glomeruli within the olfactory bulb [12].
 

Chemical compound and disease context of Presynaptic Terminals

 

Biological context of Presynaptic Terminals

 

Anatomical context of Presynaptic Terminals

 

Associations of Presynaptic Terminals with chemical compounds

 

Gene context of Presynaptic Terminals

  • Thus, TrkB is essential to the development of GABAergic neurons and regulates synapse formation in addition to its role in the development of axon terminals [32].
  • Moreover, synj; endo double mutant synaptic terminals exhibit properties that are very similar to terminals of each single mutant, and overexpression of Endophilin can partially rescue the functional defects in partial loss-of-function synj mutants [33].
  • Biochemical studies suggest that syntaxin 1A participates in multiple protein-protein interactions in the synaptic terminal, but the in vivo significance of these interactions is poorly understood [34].
  • The morphology of Dscam mutant axon terminals in either ectopic or cognate targets was abnormal [35].
  • New synaptic bouton formation is disrupted by misregulation of microtubule stability in aPKC mutants [36].
 

Analytical, diagnostic and therapeutic context of Presynaptic Terminals

References

  1. Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Zhang, Y.Q., Bailey, A.M., Matthies, H.J., Renden, R.B., Smith, M.A., Speese, S.D., Rubin, G.M., Broadie, K. Cell (2001) [Pubmed]
  2. Receptors with opposing functions are in postsynaptic microdomains under one presynaptic terminal. Tsen, G., Williams, B., Allaire, P., Zhou, Y.D., Ikonomov, O., Kondova, I., Jacob, M.H. Nat. Neurosci. (2000) [Pubmed]
  3. Dopamine acetylcholine imbalance in Parkinson's disease. Possible regenerative overgrowth of cholinergic axon terminals. Spehlmann, R., Stahl, S.M. Lancet (1976) [Pubmed]
  4. A comprehensive description of the transcriptome of the hypothalamoneurohypophyseal system in euhydrated and dehydrated rats. Hindmarch, C., Yao, S., Beighton, G., Paton, J., Murphy, D. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  5. Presynaptic GABAB autoreceptor modulation of P/Q-type calcium channels and GABA release in rat suprachiasmatic nucleus neurons. Chen, G., van den Pol, A.N. J. Neurosci. (1998) [Pubmed]
  6. Substance P in the descending cholinergic projection to REM sleep-induction regions of the rat pontine reticular formation: anatomical and electrophysiological analyses. Kohlmeier, K.A., Burns, J., Reiner, P.B., Semba, K. Eur. J. Neurosci. (2002) [Pubmed]
  7. Evidence for decreased transport of PNMT protein in advanced Alzheimer's disease. Burke, W.J., Chung, H.D., Marshall, G.L., Gillespie, K.N., Joh, T.H. Journal of the American Geriatrics Society. (1990) [Pubmed]
  8. Role of endogenous cannabinoids in synaptic signaling. Freund, T.F., Katona, I., Piomelli, D. Physiol. Rev. (2003) [Pubmed]
  9. The v-ATPase V0 subunit a1 is required for a late step in synaptic vesicle exocytosis in Drosophila. Hiesinger, P.R., Fayyazuddin, A., Mehta, S.Q., Rosenmund, T., Schulze, K.L., Zhai, R.G., Verstreken, P., Cao, Y., Zhou, Y., Kunz, J., Bellen, H.J. Cell (2005) [Pubmed]
  10. The Drosophila Wnt, wingless, provides an essential signal for pre- and postsynaptic differentiation. Packard, M., Koo, E.S., Gorczyca, M., Sharpe, J., Cumberledge, S., Budnik, V. Cell (2002) [Pubmed]
  11. Semaphorin II can function as a selective inhibitor of specific synaptic arborizations. Matthes, D.J., Sink, H., Kolodkin, A.L., Goodman, C.S. Cell (1995) [Pubmed]
  12. Topographic organization of sensory projections to the olfactory bulb. Vassar, R., Chao, S.K., Sitcheran, R., Nuñez, J.M., Vosshall, L.B., Axel, R. Cell (1994) [Pubmed]
  13. Regulatory interactions among axon terminals affecting the release of different transmitters from rat striatal slices under hypoxic and hypoglycemic conditions. Milusheva, E., Doda, M., Pasztor, E., Lajtha, A., Sershen, H., Vizi, E.S. J. Neurochem. (1992) [Pubmed]
  14. Noradrenaline modulates transmitter release by enhancing the Ca2+ sensitivity of exocytosis in the chick ciliary presynaptic terminal. Yawo, H. J. Physiol. (Lond.) (1996) [Pubmed]
  15. Heterogeneous distribution of GABA-immunoreactive nerve fibers and axon terminals in the superior cervical ganglion of adult rat. Kása, P., Joó, F., Dobó, E., Wenthold, R.J., Ottersen, O.P., Storm-Mathisen, J., Wolff, J.R. Neuroscience (1988) [Pubmed]
  16. Glutamate in synaptic terminals is reduced by lack of glucose but not hypoxia in rat hippocampal slices. Madl, J.E., Royer, S.M. Neuroscience (1999) [Pubmed]
  17. Membrane potential changes induced by 5-hydroxytryptamine in the rabbit superior cervical ganglion. Wallis, D.I., Woodward, B. Br. J. Pharmacol. (1975) [Pubmed]
  18. Calcitonin gene-related peptide regulates phosphorylation of the nicotinic acetylcholine receptor in rat myotubes. Miles, K., Greengard, P., Huganir, R.L. Neuron (1989) [Pubmed]
  19. Fast endocytosis is inhibited by GABA-mediated chloride influx at a presynaptic terminal. Hull, C., von Gersdorff, H. Neuron (2004) [Pubmed]
  20. Mouse VAP33 is associated with the endoplasmic reticulum and microtubules. Skehel, P.A., Fabian-Fine, R., Kandel, E.R. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  21. Induction of long-term facilitation in Aplysia sensory neurons by local application of serotonin to remote synapses. Clark, G.A., Kandel, E.R. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  22. Expression of a dominant negative TrkB receptor, T1, reveals a requirement for presynaptic signaling in BDNF-induced synaptic potentiation in cultured hippocampal neurons. Li, Y.X., Xu, Y., Ju, D., Lester, H.A., Davidson, N., Schuman, E.M. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  23. Target-cell-specific concentration of a metabotropic glutamate receptor in the presynaptic active zone. Shigemoto, R., Kulik, A., Roberts, J.D., Ohishi, H., Nusser, Z., Kaneko, T., Somogyi, P. Nature (1996) [Pubmed]
  24. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Garthwaite, J., Charles, S.L., Chess-Williams, R. Nature (1988) [Pubmed]
  25. GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Wagner, S., Castel, M., Gainer, H., Yarom, Y. Nature (1997) [Pubmed]
  26. Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Luo, L., Hensch, T.K., Ackerman, L., Barbel, S., Jan, L.Y., Jan, Y.N. Nature (1996) [Pubmed]
  27. Mechanosensitive channels transduce osmosensitivity in supraoptic neurons. Oliet, S.H., Bourque, C.W. Nature (1993) [Pubmed]
  28. Glutamate spillover suppresses inhibition by activating presynaptic mGluRs. Mitchell, S.J., Silver, R.A. Nature (2000) [Pubmed]
  29. Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Bibb, J.A., Chen, J., Taylor, J.R., Svenningsson, P., Nishi, A., Snyder, G.L., Yan, Z., Sagawa, Z.K., Ouimet, C.C., Nairn, A.C., Nestler, E.J., Greengard, P. Nature (2001) [Pubmed]
  30. Solubilizaiton of the choline transport system and re-incorporation into artificial membranes. King, R.G., Marchbanks, R.M. Nature (1980) [Pubmed]
  31. Possible association of alcohol tolerance with increased synaptic Ca2+ sensitivity. Lynch, M.A., Littleton, J.M. Nature (1983) [Pubmed]
  32. TrkB receptor signaling is required for establishment of GABAergic synapses in the cerebellum. Rico, B., Xu, B., Reichardt, L.F. Nat. Neurosci. (2002) [Pubmed]
  33. Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating. Verstreken, P., Koh, T.W., Schulze, K.L., Zhai, R.G., Hiesinger, P.R., Zhou, Y., Mehta, S.Q., Cao, Y., Roos, J., Bellen, H.J. Neuron (2003) [Pubmed]
  34. Syntaxin 1A interacts with multiple exocytic proteins to regulate neurotransmitter release in vivo. Wu, M.N., Fergestad, T., Lloyd, T.E., He, Y., Broadie, K., Bellen, H.J. Neuron (1999) [Pubmed]
  35. Axonal targeting of olfactory receptor neurons in Drosophila is controlled by Dscam. Hummel, T., Vasconcelos, M.L., Clemens, J.C., Fishilevich, Y., Vosshall, L.B., Zipursky, S.L. Neuron (2003) [Pubmed]
  36. New synaptic bouton formation is disrupted by misregulation of microtubule stability in aPKC mutants. Ruiz-Canada, C., Ashley, J., Moeckel-Cole, S., Drier, E., Yin, J., Budnik, V. Neuron (2004) [Pubmed]
  37. Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons. DiFiglia, M., Sapp, E., Chase, K., Schwarz, C., Meloni, A., Young, C., Martin, E., Vonsattel, J.P., Carraway, R., Reeves, S.A. Neuron (1995) [Pubmed]
  38. Synaptic vesicle recycling in synapsin I knock-out mice. Ryan, T.A., Li, L., Chin, L.S., Greengard, P., Smith, S.J. J. Cell Biol. (1996) [Pubmed]
  39. Glutamate and substance P coexist in primary afferent terminals in the superficial laminae of spinal cord. De Biasi, S., Rustioni, A. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  40. Decreased striatal monoaminergic terminals in severe chronic alcoholism demonstrated with (+)[11C]dihydrotetrabenazine and positron emission tomography. Gilman, S., Koeppe, R.A., Adams, K.M., Junck, L., Kluin, K.J., Johnson-Greene, D., Martorello, S., Heumann, M., Bandekar, R. Ann. Neurol. (1998) [Pubmed]
  41. Synaptic physiology and ultrastructure in comatose mutants define an in vivo role for NSF in neurotransmitter release. Kawasaki, F., Mattiuz, A.M., Ordway, R.W. J. Neurosci. (1998) [Pubmed]
 
WikiGenes - Universities