The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Muscle, Skeletal

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Muscle, Skeletal

 

Psychiatry related information on Muscle, Skeletal

 

High impact information on Muscle, Skeletal

  • The RyR channels are ubiquitously expressed in many types of cells and participate in a variety of important Ca2+ signaling phenomena (neurotransmission, secretion, etc.). In striated muscle, the RyR channels represent the primary pathway for Ca2+ release during the excitation-contraction coupling process [11].
  • All major nitric oxide synthase (NOS) isoforms, including a muscle-specific splice variant of neuronal-type (n) NOS, are expressed in skeletal muscles of all mammals [12].
  • In exercising skeletal muscle, lactic acid contributes huge amounts of H(+) and by these affects the relative contribution of the three forms of CO(2) [13].
  • Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease [14].
  • Lactate-proton cotransport in skeletal muscle [15].
 

Chemical compound and disease context of Muscle, Skeletal

 

Biological context of Muscle, Skeletal

 

Anatomical context of Muscle, Skeletal

 

Associations of Muscle, Skeletal with chemical compounds

 

Gene context of Muscle, Skeletal

  • Two lines of transgenic mdx mice have been generated that express a 71 kD non-muscle isoform of dystrophin (Dp71) in skeletal muscle [36].
  • Our results indicate that MyoD is dispensable for skeletal muscle development in mice, revealing some degree of functional redundancy in the control of the skeletal myogenic developmental program [37].
  • These results suggest that while Myf-5 plays a crucial role in the formation of lateral sclerotome derivatives, Myf-5 is dispensable for the development of skeletal muscle, perhaps because other members of the myogenic HLH family substitute for Myf-5 activity [38].
  • Mutations in CAV3 cause mechanical hyperirritability of skeletal muscle in rippling muscle disease [39].
  • In vitro, activation of PPARdelta in adipocytes and skeletal muscle cells promotes fatty acid oxidation and utilization [40].
 

Analytical, diagnostic and therapeutic context of Muscle, Skeletal

References

  1. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Musarò, A., McCullagh, K., Paul, A., Houghton, L., Dobrowolny, G., Molinaro, M., Barton, E.R., Sweeney, H.L., Rosenthal, N. Nat. Genet. (2001) [Pubmed]
  2. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Liu, J., Aoki, M., Illa, I., Wu, C., Fardeau, M., Angelini, C., Serrano, C., Urtizberea, J.A., Hentati, F., Hamida, M.B., Bohlega, S., Culper, E.J., Amato, A.A., Bossie, K., Oeltjen, J., Bejaoui, K., McKenna-Yasek, D., Hosler, B.A., Schurr, E., Arahata, K., de Jong, P.J., Brown, R.H. Nat. Genet. (1998) [Pubmed]
  3. Missense mutations in the adhalin gene linked to autosomal recessive muscular dystrophy. Roberds, S.L., Leturcq, F., Allamand, V., Piccolo, F., Jeanpierre, M., Anderson, R.D., Lim, L.E., Lee, J.C., Tomé, F.M., Romero, N.B. Cell (1994) [Pubmed]
  4. Novel mutations in families with unusual and variable disorders of the skeletal muscle sodium channel. McClatchey, A.I., McKenna-Yasek, D., Cros, D., Worthen, H.G., Kuncl, R.W., DeSilva, S.M., Cornblath, D.R., Gusella, J.F., Brown, R.H. Nat. Genet. (1992) [Pubmed]
  5. Disruption of the sarcoglycan-sarcospan complex in vascular smooth muscle: a novel mechanism for cardiomyopathy and muscular dystrophy. Coral-Vazquez, R., Cohn, R.D., Moore, S.A., Hill, J.A., Weiss, R.M., Davisson, R.L., Straub, V., Barresi, R., Bansal, D., Hrstka, R.F., Williamson, R., Campbell, K.P. Cell (1999) [Pubmed]
  6. Phencyclidine-associated acute rhabdomyolysis. Cogen, F.C., Rigg, G., Simmons, J.L., Domino, E.F. Ann. Intern. Med. (1978) [Pubmed]
  7. Survival motor neuron (SMN) protein: role in neurite outgrowth and neuromuscular maturation during neuronal differentiation and development. Fan, L., Simard, L.R. Hum. Mol. Genet. (2002) [Pubmed]
  8. Role of UCP homologues in skeletal muscles and brown adipose tissue: mediators of thermogenesis or regulators of lipids as fuel substrate? Samec, S., Seydoux, J., Dulloo, A.G. FASEB J. (1998) [Pubmed]
  9. Transcriptional regulation in cardiac muscle. Coordinate expression of Id with a neonatal phenotype during development and following a hypertrophic stimulus in adult rat ventricular myocytes in vitro. Springhorn, J.P., Ellingsen, O., Berger, H.J., Kelly, R.A., Smith, T.W. J. Biol. Chem. (1992) [Pubmed]
  10. Co-localization of amyloid-associated proteins with amyloid beta in rat soleus muscle in chloroquine-induced myopathy: a possible model for amyloid beta formation in Alzheimer's disease. Tsuzuki, K., Fukatsu, R., Takamaru, Y., Yoshida, T., Mafune, N., Kobayashi, K., Fujii, N., Takahata, N. Brain Res. (1995) [Pubmed]
  11. Ryanodine receptor calcium release channels. Fill, M., Copello, J.A. Physiol. Rev. (2002) [Pubmed]
  12. Physiology of nitric oxide in skeletal muscle. Stamler, J.S., Meissner, G. Physiol. Rev. (2001) [Pubmed]
  13. Carbon dioxide transport and carbonic anhydrase in blood and muscle. Geers, C., Gros, G. Physiol. Rev. (2000) [Pubmed]
  14. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Berchtold, M.W., Brinkmeier, H., Müntener, M. Physiol. Rev. (2000) [Pubmed]
  15. Lactate-proton cotransport in skeletal muscle. Juel, C. Physiol. Rev. (1997) [Pubmed]
  16. Effect of quinidine on digoxin concentration in skeletal muscle and serum in patients with atrial fibrillation. Evidence for reduced binding of digoxin in muscle. Schenck-Gustafsson, K., Jogestrand, T., Nordlander, R., Dahlqvist, R. N. Engl. J. Med. (1981) [Pubmed]
  17. Ryanodine receptor gene is a candidate for predisposition to malignant hyperthermia. MacLennan, D.H., Duff, C., Zorzato, F., Fujii, J., Phillips, M., Korneluk, R.G., Frodis, W., Britt, B.A., Worton, R.G. Nature (1990) [Pubmed]
  18. Postsynaptic fall in intracellular pH induced by GABA-activated bicarbonate conductance. Kaila, K., Voipio, J. Nature (1987) [Pubmed]
  19. NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Guttridge, D.C., Mayo, M.W., Madrid, L.V., Wang, C.Y., Baldwin, A.S. Science (2000) [Pubmed]
  20. Regulation of glucose utilization in adipose cells and muscle after long-term experimental hyperinsulinemia in rats. Wardzala, L.J., Hirshman, M., Pofcher, E., Horton, E.D., Mead, P.M., Cushman, S.W., Horton, E.S. J. Clin. Invest. (1985) [Pubmed]
  21. Trophic effect of ciliary neurotrophic factor on denervated skeletal muscle. Helgren, M.E., Squinto, S.P., Davis, H.L., Parry, D.J., Boulton, T.G., Heck, C.S., Zhu, Y., Yancopoulos, G.D., Lindsay, R.M., DiStefano, P.S. Cell (1994) [Pubmed]
  22. Kinetics of biosynthesis of acetylcholine receptor and subsequent incorporation into plasma membrane of cultured chick skeletal muscle. Devreotes, P.N., Gardner, J.M., Fambrough, D.M. Cell (1977) [Pubmed]
  23. The callipyge mutation enhances the expression of coregulated imprinted genes in cis without affecting their imprinting status. Charlier, C., Segers, K., Karim, L., Shay, T., Gyapay, G., Cockett, N., Georges, M. Nat. Genet. (2001) [Pubmed]
  24. Phosphorylation of intermediate filament proteins by cAMP-dependent protein kinases. O'Connor, C.M., Gard, D.L., Lazarides, E. Cell (1981) [Pubmed]
  25. Molecular analysis of the muscle pathology associated with mitochondrial DNA deletions. Moraes, C.T., Ricci, E., Petruzzella, V., Shanske, S., DiMauro, S., Schon, E.A., Bonilla, E. Nat. Genet. (1992) [Pubmed]
  26. Mutations in the gene-encoding SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+ ATPase, are associated with Brody disease. Odermatt, A., Taschner, P.E., Khanna, V.K., Busch, H.F., Karpati, G., Jablecki, C.K., Breuning, M.H., MacLennan, D.H. Nat. Genet. (1996) [Pubmed]
  27. Fumarase deficiency: a new cause of mitochondrial encephalomyopathy. Zinn, A.B., Kerr, D.S., Hoppel, C.L. N. Engl. J. Med. (1986) [Pubmed]
  28. Subcellular sorting of isoactins: selective association of gamma actin with skeletal muscle mitochondria. Pardo, J.V., Pittenger, M.F., Craig, S.W. Cell (1983) [Pubmed]
  29. Disruption of DAG1 in differentiated skeletal muscle reveals a role for dystroglycan in muscle regeneration. Cohn, R.D., Henry, M.D., Michele, D.E., Barresi, R., Saito, F., Moore, S.A., Flanagan, J.D., Skwarchuk, M.W., Robbins, M.E., Mendell, J.R., Williamson, R.A., Campbell, K.P. Cell (2002) [Pubmed]
  30. 5-Azacytidine induction of stable mesodermal stem cell lineages from 10T1/2 cells: evidence for regulatory genes controlling determination. Konieczny, S.F., Emerson, C.P. Cell (1984) [Pubmed]
  31. Control of acetylcholine receptors in skeletal muscle. Fambrough, D.M. Physiol. Rev. (1979) [Pubmed]
  32. The effect of diabetic control on the width of skeletal-muscle capillary basement membrane in patients with Type I diabetes mellitus. Raskin, P., Pietri, A.O., Unger, R., Shannon, W.A. N. Engl. J. Med. (1983) [Pubmed]
  33. Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity. van Deursen, J., Heerschap, A., Oerlemans, F., Ruitenbeek, W., Jap, P., ter Laak, H., Wieringa, B. Cell (1993) [Pubmed]
  34. Recurrent hypoglycemia associated with glutaric aciduria type II in an adult. Dusheiko, G., Kew, M.C., Joffe, B.I., Lewin, J.R., Mantagos, S., Tanaka, K. N. Engl. J. Med. (1979) [Pubmed]
  35. The skeletal muscle calcium release channel: coupled O2 sensor and NO signaling functions. Eu, J.P., Sun, J., Xu, L., Stamler, J.S., Meissner, G. Cell (2000) [Pubmed]
  36. Dp71 can restore the dystrophin-associated glycoprotein complex in muscle but fails to prevent dystrophy. Cox, G.A., Sunada, Y., Campbell, K.P., Chamberlain, J.S. Nat. Genet. (1994) [Pubmed]
  37. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Rudnicki, M.A., Braun, T., Hinuma, S., Jaenisch, R. Cell (1992) [Pubmed]
  38. Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Braun, T., Rudnicki, M.A., Arnold, H.H., Jaenisch, R. Cell (1992) [Pubmed]
  39. Mutations in CAV3 cause mechanical hyperirritability of skeletal muscle in rippling muscle disease. Betz, R.C., Schoser, B.G., Kasper, D., Ricker, K., Ramírez, A., Stein, V., Torbergsen, T., Lee, Y.A., Nöthen, M.M., Wienker, T.F., Malin, J.P., Propping, P., Reis, A., Mortier, W., Jentsch, T.J., Vorgerd, M., Kubisch, C. Nat. Genet. (2001) [Pubmed]
  40. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Wang, Y.X., Lee, C.H., Tiep, S., Yu, R.T., Ham, J., Kang, H., Evans, R.M. Cell (2003) [Pubmed]
  41. Pax7 is required for the specification of myogenic satellite cells. Seale, P., Sabourin, L.A., Girgis-Gabardo, A., Mansouri, A., Gruss, P., Rudnicki, M.A. Cell (2000) [Pubmed]
  42. The genes and mRNA coding for the heavy chains of chick embryonic skeletal myosin. Patrinou-Georgoulas, M., John, H.A. Cell (1977) [Pubmed]
  43. Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene. Takeshima, H., Iino, M., Takekura, H., Nishi, M., Kuno, J., Minowa, O., Takano, H., Noda, T. Nature (1994) [Pubmed]
  44. Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney. Isaka, Y., Brees, D.K., Ikegaya, K., Kaneda, Y., Imai, E., Noble, N.A., Border, W.A. Nat. Med. (1996) [Pubmed]
 
WikiGenes - Universities