The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Neuropharmacology

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Neuropharmacology

 

Psychiatry related information on Neuropharmacology

 

High impact information on Neuropharmacology

 

Biological context of Neuropharmacology

 

Anatomical context of Neuropharmacology

 

Associations of Neuropharmacology with chemical compounds

 

Gene context of Neuropharmacology

  • Since NR2A is not transported to the cell surface unless it is associated with NR1 (McIlhinney, R. A. J., Le Bourdellès, B., Tricuad, N., Molnar, E., Streit, P., and Whiting, P. J. (1998) Neuropharmacology 37, 1355-1367), surface expression of NR2A can be used to monitor the association of the subunits [29].
  • [2004] Neuropharmacology 46:907-917) that pharmacological manipulation of mGlu2 receptors influences cognitive performance in the rodent [30].
  • A review of the neuropharmacology of the alleged hallucinogen bufotenine is presented, including recent experimental results showing activity similar to LSD and other known hallucinogens (psilocin and 5-MeO-DMT) at the purported hallucinogenic serotonin (5-HT) receptors, 5-HT2A and 5-HT2C [31].
  • Commonly used laboratory species (e.g. rat and mouse) lack an emetic reflex, and the implications of this for models of upper GI disorders have been explored in the light of expanding knowledge of the neuropharmacology of the emetic reflex implicating glutamate, prostanoids, cannabinoids and substance P [32].
  • Neuropharmacology research of these peptides and their drug manipulation is needed to advance our knowledge of the possible role of ANF in psychiatry beyond the current level of speculation [33].
 

Analytical, diagnostic and therapeutic context of Neuropharmacology

References

  1. Cooperation of NMDA and tachykinin NK(1) and NK(2) receptors in the medullary transmission of vagal afferent input from the acid-threatened rat stomach. Jocic, M., Schuligoi, R., Schöninkle, E., Pabst, M.A., Holzer, P. Pain (2001) [Pubmed]
  2. The neuropharmacology of loperamide-induced emesis in the ferret: the role of the area postrema, vagus, opiate and 5-HT3 receptors. Bhandari, P., Bingham, S., Andrews, P.L. Neuropharmacology (1992) [Pubmed]
  3. A risk-benefit assessment of drugs used in the management of Parkinson's disease. Bodagh, I.Y., Robertson, D.R. Drug safety : an international journal of medical toxicology and drug experience. (1994) [Pubmed]
  4. Tryptamine-induced myoclonus in guinea-pigs pretreated with a monoamine oxidase inhibitor indicates pre- and post-synaptic actions of tryptamine upon central indoleamine systems. Luscombe, G., Jenner, P., Marsden, C.D. Neuropharmacology (1982) [Pubmed]
  5. Efficacy of the 5-HT1A agonist, buspirone hydrochloride, in migraineurs with anxiety: a randomized, prospective, parallel group, double-blind, placebo-controlled study. Lee, S.T., Park, J.H., Kim, M. Headache. (2005) [Pubmed]
  6. Effects of the 5-HT2A agonist psilocybin on mismatch negativity generation and AX-continuous performance task: implications for the neuropharmacology of cognitive deficits in schizophrenia. Umbricht, D., Vollenweider, F.X., Schmid, L., Grübel, C., Skrabo, A., Huber, T., Koller, R. Neuropsychopharmacology (2003) [Pubmed]
  7. Acute and subacute effects of risperidone and cocaine on accumbens dopamine and serotonin release using in vivo microvoltammetry on line with open-field behavior. Broderick, P.A., Rahni, D.N., Zhou, Y. Prog. Neuropsychopharmacol. Biol. Psychiatry (2003) [Pubmed]
  8. Childhood is not what it used to be: the rise of Ritalin has more to do with shifting social values than advances in neuropharmacology. Concar, D. New scientist (1971) (2002) [Pubmed]
  9. Neuropharmacology. Acetylcholine and brain cells. Brown, D. Nature (1986) [Pubmed]
  10. The neuropharmacology of capsaicin: review of some recent observations. Buck, S.H., Burks, T.F. Pharmacol. Rev. (1986) [Pubmed]
  11. Neuropharmacology of phencyclidine: basic mechanisms and therapeutic potential. Johnson, K.M., Jones, S.M. Annu. Rev. Pharmacol. Toxicol. (1990) [Pubmed]
  12. Different classes of glutamate receptors mediate distinct behaviors in a single brainstem nucleus. Dye, J., Heiligenberg, W., Keller, C.H., Kawasaki, M. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  13. Neurophysiology and neuropharmacology of hypothalamic magnocellular neurons secreting vasopressin and oxytocin. Renaud, L.P., Bourque, C.W. Prog. Neurobiol. (1991) [Pubmed]
  14. Dopamine hypofunction possibly results from a defect in glutamate-stimulated release of dopamine in the nucleus accumbens shell of a rat model for attention deficit hyperactivity disorder--the spontaneously hypertensive rat. Russell, V.A. Neuroscience and biobehavioral reviews. (2003) [Pubmed]
  15. Neuropharmacology of the extrapyramidal system. Borison, R.L., Diamond, B.I. The Journal of clinical psychiatry. (1987) [Pubmed]
  16. Inhibition of 5-HT3 receptors by propofol: equilibrium and kinetic measurements. Barann, M., Dilger, J.P., Bönisch, H., Göthert, M., Dybek, A., Urban, B.W. Neuropharmacology (2000) [Pubmed]
  17. Molecular analysis of AMPA-specific receptors: subunit composition, editing, and calcium influx determination in small amounts of tissue. Lee, J.C., Greig, A., Ravindranathan, A., Parks, T.N., Rao, M.S. Brain Res. Brain Res. Protoc. (1998) [Pubmed]
  18. Neurochemistry and neuropharmacology of emesis - the role of serotonin. Endo, T., Minami, M., Hirafuji, M., Ogawa, T., Akita, K., Nemoto, M., Saito, H., Yoshioka, M., Parvez, S.H. Toxicology (2000) [Pubmed]
  19. Reversal of behavioral depression by infusion of an alpha-2 adrenergic agonist into the locus coeruleus. Simson, P.G., Weiss, J.M., Hoffman, L.J., Ambrose, M.J. Neuropharmacology (1986) [Pubmed]
  20. Contributory role for nornicotine in nicotine neuropharmacology: nornicotine-evoked [3H]dopamine overflow from rat nucleus accumbens slices. Green, T.A., Crooks, P.A., Bardo, M.T., Dwoskin, L.P. Biochem. Pharmacol. (2001) [Pubmed]
  21. Anteroventral wall of the third ventricle and dorsal lamina terminalis: headquarters for control of body fluid homeostasis? McKinley, M.J., Pennington, G.L., Oldfield, B.J. Clin. Exp. Pharmacol. Physiol. (1996) [Pubmed]
  22. Dopamine-containing small intensely fluorescent cells and sympathetic ganglion function. Neff, N.H., Karoum, F., Hadjiconstantinou, M. Fed. Proc. (1983) [Pubmed]
  23. Effects of glutamate and gamma-aminobutyric acid on spontaneously active intraocular spinal cord graft neurons. Broton, J.G., Yezierski, R.P., Seiger, A. Journal of neural transplantation & plasticity. (1991) [Pubmed]
  24. On the neuropharmacology of thyrotropin releasing hormone (TRH). Yarbrough, G.G. Prog. Neurobiol. (1979) [Pubmed]
  25. Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Stein, E.A., Pankiewicz, J., Harsch, H.H., Cho, J.K., Fuller, S.A., Hoffmann, R.G., Hawkins, M., Rao, S.M., Bandettini, P.A., Bloom, A.S. The American journal of psychiatry. (1998) [Pubmed]
  26. Neuropharmacology of S-adenosyl-L-methionine. Baldessarini, R.J. Am. J. Med. (1987) [Pubmed]
  27. Dopamine and noradrenaline control distinct functions in rodent microglial cells. Färber, K., Pannasch, U., Kettenmann, H. Mol. Cell. Neurosci. (2005) [Pubmed]
  28. Tizanidine: neuropharmacology and mechanism of action. Coward, D.M. Neurology (1994) [Pubmed]
  29. Identification of molecular determinants that are important in the assembly of N-methyl-D-aspartate receptors. Meddows, E., Le Bourdelles, B., Grimwood, S., Wafford, K., Sandhu, S., Whiting, P., McIlhinney, R.A. J. Biol. Chem. (2001) [Pubmed]
  30. Distribution and abundance of metabotropic glutamate receptor subtype 2 in rat brain revealed by [3H]LY354740 binding in vitro and quantitative radioautography: correlation with the sites of synthesis, expression, and agonist stimulation of [35S]GTPgammas binding. Richards, G., Messer, J., Malherbe, P., Pink, R., Brockhaus, M., Stadler, H., Wichmann, J., Schaffhauser, H., Mutel, V. J. Comp. Neurol. (2005) [Pubmed]
  31. Bufotenine: toward an understanding of possible psychoactive mechanisms. McBride, M.C. Journal of psychoactive drugs. (2000) [Pubmed]
  32. Abdominal vagal afferent neurones: an important target for the treatment of gastrointestinal dysfunction. Andrews, P.L., Sanger, G.J. Current opinion in pharmacology. (2002) [Pubmed]
  33. Atrial natriuretic factor: does it have a role in psychiatry? MacMillan, H., Steiner, M. Biol. Psychiatry (1994) [Pubmed]
  34. Chronic neuropharmacology of cocaine: progress in pharmacotherapy. Gawin, F.H. The Journal of clinical psychiatry. (1988) [Pubmed]
 
WikiGenes - Universities