The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Saccharomyces cerevisiae

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Saccharomyces cerevisiae

 

Psychiatry related information on Saccharomyces cerevisiae

  • Non-Saccharomyces yeasts were outgrown by S. cerevisiae only after ethanol reached concentrations around 4-5% (v/v), which argues in favour of a potential important role of non-Saccharomyces in the final organoleptic characteristics of the wine [6].
 

High impact information on Saccharomyces cerevisiae

  • The simultaneous absence of the reticulons and Yop1p in S. cerevisiae results in disrupted tubular ER [7].
  • We identified a strain conformation of Sup35 that allows transmission from the S. cerevisiae (Sc) Sup35 to the highly divergent C. albicans (Ca) Sup35 both in vivo and in vitro [8].
  • Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae [9].
  • A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae [10].
  • The S. cerevisiae SCF(Cdc4) is a prototype of RING-type SCF E3s, which recruit substrates for polyubiquitination by the Cdc34 ubiquitin-conjugating enzyme [11].
 

Chemical compound and disease context of Saccharomyces cerevisiae

 

Biological context of Saccharomyces cerevisiae

 

Anatomical context of Saccharomyces cerevisiae

 

Associations of Saccharomyces cerevisiae with chemical compounds

 

Gene context of Saccharomyces cerevisiae

 

Analytical, diagnostic and therapeutic context of Saccharomyces cerevisiae

References

  1. An E. coli aminoacyl-tRNA synthetase can substitute for yeast mitochondrial enzyme function in vivo. Edwards, H., Schimmel, P. Cell (1987) [Pubmed]
  2. TEL1, an S. cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1. Morrow, D.M., Tagle, D.A., Shiloh, Y., Collins, F.S., Hieter, P. Cell (1995) [Pubmed]
  3. In vitro assays for recombinogenic activity of chemical carcinogens and related compounds with Saccharomyces cerevisiae D3. Simmon, V.F. J. Natl. Cancer Inst. (1979) [Pubmed]
  4. Engineering pathways for malate degradation in Saccharomyces cerevisiae. Volschenk, H., Viljoen, M., Grobler, J., Petzold, B., Bauer, F., Subden, R.E., Young, R.A., Lonvaud, A., Denayrolles, M., van Vuuren, H.J. Nat. Biotechnol. (1997) [Pubmed]
  5. A prokaryote and human tRNA synthetase provide an essential RNA splicing function in yeast mitochondria. Houman, F., Rho, S.B., Zhang, J., Shen, X., Wang, C.C., Schimmel, P., Martinis, S.A. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  6. Application of fluorescence in situ hybridisation (FISH) to the analysis of yeast population dynamics in winery and laboratory grape must fermentations. Xufre, A., Albergaria, H., Inácio, J., Spencer-Martins, I., Gírio, F. Int. J. Food Microbiol. (2006) [Pubmed]
  7. A class of membrane proteins shaping the tubular endoplasmic reticulum. Voeltz, G.K., Prinz, W.A., Shibata, Y., Rist, J.M., Rapoport, T.A. Cell (2006) [Pubmed]
  8. Mechanism of cross-species prion transmission: an infectious conformation compatible with two highly divergent yeast prion proteins. Tanaka, M., Chien, P., Yonekura, K., Weissman, J.S. Cell (2005) [Pubmed]
  9. Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae. Ahn, S.H., Cheung, W.L., Hsu, J.Y., Diaz, R.L., Smith, M.M., Allis, C.D. Cell (2005) [Pubmed]
  10. A Rad53 kinase-dependent surveillance mechanism that regulates histone protein levels in S. cerevisiae. Gunjan, A., Verreault, A. Cell (2003) [Pubmed]
  11. Release of ubiquitin-charged Cdc34-S - Ub from the RING domain is essential for ubiquitination of the SCF(Cdc4)-bound substrate Sic1. Deffenbaugh, A.E., Scaglione, K.M., Zhang, L., Moore, J.M., Buranda, T., Sklar, L.A., Skowyra, D. Cell (2003) [Pubmed]
  12. Mutations of human myristoyl-CoA:protein N-myristoyltransferase cause temperature-sensitive myristic acid auxotrophy in Saccharomyces cerevisiae. Duronio, R.J., Reed, S.I., Gordon, J.I. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  13. Generation of a strong mutator phenotype in yeast by imbalanced base excision repair. Glassner, B.J., Rasmussen, L.J., Najarian, M.T., Posnick, L.M., Samson, L.D. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  14. Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts. Kealey, J.T., Liu, L., Santi, D.V., Betlach, M.C., Barr, P.J. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  15. Photolyases from Saccharomyces cerevisiae and Escherichia coli recognize common binding determinants in DNA containing pyrimidine dimers. Baer, M., Sancar, G.B. Mol. Cell. Biol. (1989) [Pubmed]
  16. A bacterial amber suppressor in Saccharomyces cerevisiae is selectively recognized by a bacterial aminoacyl-tRNA synthetase. Edwards, H., Schimmel, P. Mol. Cell. Biol. (1990) [Pubmed]
  17. The meiosis-specific Hop2 protein of S. cerevisiae ensures synapsis between homologous chromosomes. Leu, J.Y., Chua, P.R., Roeder, G.S. Cell (1998) [Pubmed]
  18. SPA1: a gene important for chromosome segregation and other mitotic functions in S. cerevisiae. Snyder, M., Davis, R.W. Cell (1988) [Pubmed]
  19. DNA sequence and characterization of the S. cerevisiae gene encoding adenylate cyclase. Kataoka, T., Broek, D., Wigler, M. Cell (1985) [Pubmed]
  20. The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Broek, D., Toda, T., Michaeli, T., Levin, L., Birchmeier, C., Zoller, M., Powers, S., Wigler, M. Cell (1987) [Pubmed]
  21. Cloning of human, mouse and fission yeast recombination genes homologous to RAD51 and recA. Shinohara, A., Ogawa, H., Matsuda, Y., Ushio, N., Ikeo, K., Ogawa, T. Nat. Genet. (1993) [Pubmed]
  22. Integration of group II intron bI1 into a foreign RNA by reversal of the self-splicing reaction in vitro. Mörl, M., Schmelzer, C. Cell (1990) [Pubmed]
  23. PAS1, a yeast gene required for peroxisome biogenesis, encodes a member of a novel family of putative ATPases. Erdmann, R., Wiebel, F.F., Flessau, A., Rytka, J., Beyer, A., Fröhlich, K.U., Kunau, W.H. Cell (1991) [Pubmed]
  24. Rbl2p, a yeast protein that binds to beta-tubulin and participates in microtubule function in vivo. Archer, J.E., Vega, L.R., Solomon, F. Cell (1995) [Pubmed]
  25. New glimpses of an old machine. Paull, T.T. Cell (2001) [Pubmed]
  26. Genetic variants of the mannan-binding lectin are associated with immune reactivity to mannans in Crohn's disease. Seibold, F., Konrad, A., Flogerzi, B., Seibold-Schmid, B., Arni, S., Jüliger, S., Kun, J.F. Gastroenterology (2004) [Pubmed]
  27. The HTS1 gene encodes both the cytoplasmic and mitochondrial histidine tRNA synthetases of S. cerevisiae. Natsoulis, G., Hilger, F., Fink, G.R. Cell (1986) [Pubmed]
  28. Deletions of a tyrosine tRNA gene in S. cerevisiae. Rothstein, R. Cell (1979) [Pubmed]
  29. Assembly of the mitochondrial membrane system: sequences of yeast mitochondrial valine and an unusual threonine tRNA gene. Li, M., Tzagoloff, A. Cell (1979) [Pubmed]
  30. Compartmentalized assembly of oligosaccharides on exported glycoproteins in yeast. Esmon, B., Novick, P., Schekman, R. Cell (1981) [Pubmed]
  31. Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Simon, M.A., Bowtell, D.D., Dodson, G.S., Laverty, T.R., Rubin, G.M. Cell (1991) [Pubmed]
  32. Functional cloning of BUD5, a CDC25-related gene from S. cerevisiae that can suppress a dominant-negative RAS2 mutant. Powers, S., Gonzales, E., Christensen, T., Cubert, J., Broek, D. Cell (1991) [Pubmed]
  33. SGV1 encodes a CDC28/cdc2-related kinase required for a G alpha subunit-mediated adaptive response to pheromone in S. cerevisiae. Irie, K., Nomoto, S., Miyajima, I., Matsumoto, K. Cell (1991) [Pubmed]
  34. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Shinohara, A., Ogawa, H., Ogawa, T. Cell (1992) [Pubmed]
  35. Requirement of yeast RAD2, a homolog of human XPG gene, for efficient RNA polymerase II transcription. implications for Cockayne syndrome. Lee, S.K., Yu, S.L., Prakash, L., Prakash, S. Cell (2002) [Pubmed]
  36. A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Tishkoff, D.X., Filosi, N., Gaida, G.M., Kolodner, R.D. Cell (1997) [Pubmed]
  37. Mdm12p, a component required for mitochondrial inheritance that is conserved between budding and fission yeast. Berger, K.H., Sogo, L.F., Yaffe, M.P. J. Cell Biol. (1997) [Pubmed]
  38. The osmotic integrity of the yeast cell requires a functional PKC1 gene product. Paravicini, G., Cooper, M., Friedli, L., Smith, D.J., Carpentier, J.L., Klig, L.S., Payton, M.A. Mol. Cell. Biol. (1992) [Pubmed]
  39. Requirement of one functional RAS gene and inability of an oncogenic ras variant to mediate the glucose-induced cyclic AMP signal in the yeast Saccharomyces cerevisiae. Mbonyi, K., Beullens, M., Detremerie, K., Geerts, L., Thevelein, J.M. Mol. Cell. Biol. (1988) [Pubmed]
  40. The Saccharomyces cerevisiae Msh2 and Msh6 proteins form a complex that specifically binds to duplex oligonucleotides containing mismatched DNA base pairs. Alani, E. Mol. Cell. Biol. (1996) [Pubmed]
  41. Expression of the gene for ornithine decarboxylase of Saccharomyces cerevisiae in Escherichia coli. Fonzi, W.A., Sypherd, P.S. Mol. Cell. Biol. (1985) [Pubmed]
 
WikiGenes - Universities