The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Myofibrils

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Myofibrils

  • CONCLUSIONS: Calcium sensitization affects function and mechanical efficiency of stunned myocardium more profoundly than of not-stunned myocardium, lending support to the hypothesis that Ca2+ desensitization of the myofibrils is involved in myocardial stunning [1].
  • A full-thickness wedge biopsy was performed, and hematoxylin and eosin staining and immunohistochemistry analysis of the specimen demonstrated normal myofibrils but a severely destructive monocytic fasciitis [2].
  • Human wild-type cardiac troponin T, I, C and five troponin T mutants (I79N, R92Q, F110I, E244D, and R278C) causing familial hypertrophic cardiomyopathy were expressed in Escherichia coli, and then were purified and incorporated into rabbit cardiac myofibrils using a troponin exchange technique [3].
  • Cardiac hypertrophy, however, may also show alterations affecting capillary luminal volume and surface and the mitochondrial to myofibril volume ratio, which indicate an inadequate growth adaptation of the component structures responsible for tissue oxygenation and energy production [4].
  • The switch to supply of energy by diffusion of MgATP into the myofibril when depletion of PCr raises [ATP]/[PCr] greatly, e.g. during anoxia, results in a local [Mg2+] increase, which inhibits the ATPase [5].
 

Psychiatry related information on Myofibrils

 

High impact information on Myofibrils

  • Consequently, mutations in C. elegans unc-45 result in paralyzed animals with severe myofibril disorganization in striated body wall muscles [7].
  • Electron microscopic analysis of the heart revealed disorganization of myofibrils and disruption of Z-disks [8].
  • Arthrin formation lags several hours behind that of actin III, implying that ubiquitination coincides with some aspect of myofibril assembly [9].
  • A nonsense mutation within the act88F actin gene disrupts myofibril formation in Drosophila indirect flight muscles [10].
  • The cardiac actin protein, normally found only in myofibrils, is stably accumulated at a high level, about one-third that of the endogenous mouse beta-actin [11].
 

Chemical compound and disease context of Myofibrils

 

Biological context of Myofibrils

 

Anatomical context of Myofibrils

 

Associations of Myofibrils with chemical compounds

  • The finding of an isoenzyme of creatine phosphokinase attached to the M-line region of the myofibril revealed the peripheral receptor for the mitochondrially generated phosphorylcreatine [26].
  • Localization of creatine kinase isoenzymes in myofibrils. I. Chicken skeletal muscle [27].
  • None of the tagged nebulin fragments behaved as dominant negatives; they neither blocked the assembly nor induced the disassembly of mature striated myofibrils [28].
  • Treatment of crude myofibrils with 0.5% Triton X-100 results in the release of a 110,000-dalton component without affecting the myofibrillar structure [29].
  • C protein was purified from extracts of detergent-washed myofibrils by sequential hydroxylapatite and DEAE-Sephacel chromatography [30].
 

Gene context of Myofibrils

 

Analytical, diagnostic and therapeutic context of Myofibrils

References

  1. Myofibrillar Ca2+ sensitization predominantly enhances function and mechanical efficiency of stunned myocardium. Soei, L.K., Sassen, L.M., Fan, D.S., van Veen, T., Krams, R., Verdouw, P.D. Circulation (1994) [Pubmed]
  2. Monocytic fasciitis: a newly recognized clinical feature of tumor necrosis factor receptor dysfunction. Hull, K.M., Wong, K., Wood, G.M., Chu, W.S., Kastner, D.L. Arthritis Rheum. (2002) [Pubmed]
  3. Ca2+ sensitization and potentiation of the maximum level of myofibrillar ATPase activity caused by mutations of troponin T found in familial hypertrophic cardiomyopathy. Yanaga, F., Morimoto, S., Ohtsuki, I. J. Biol. Chem. (1999) [Pubmed]
  4. Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: a review. Anversa, P., Ricci, R., Olivetti, G. J. Am. Coll. Cardiol. (1986) [Pubmed]
  5. The effect of Mg2+ on cardiac muscle function: Is CaATP the substrate for priming myofibril cross-bridge formation and Ca2+ reuptake by the sarcoplasmic reticulum? Smith, G.A., Vandenberg, J.I., Freestone, N.S., Dixon, H.B. Biochem. J. (2001) [Pubmed]
  6. Cardiac myofibril disorientation and Z band abnormalities in idiopathic cardiomyopathy. An electron microscope study. Izumi, T., Hattori, A., Higuma, N., Tamura, K. Archivum histologicum Japonicum. Nippon soshikigaku kiroku. (1978) [Pubmed]
  7. Regulation of the myosin-directed chaperone UNC-45 by a novel E3/E4-multiubiquitylation complex in C. elegans. Hoppe, T., Cassata, G., Barral, J.M., Springer, W., Hutagalung, A.H., Epstein, H.F., Baumeister, R. Cell (2004) [Pubmed]
  8. Cardiovascular anomaly, impaired actin bundling and resistance to Src-induced transformation in mice lacking p130Cas. Honda, H., Oda, H., Nakamoto, T., Honda, Z., Sakai, R., Suzuki, T., Saito, T., Nakamura, K., Nakao, K., Ishikawa, T., Katsuki, M., Yazaki, Y., Hirai, H. Nat. Genet. (1998) [Pubmed]
  9. Arthrin, a myofibrillar protein of insect flight muscle, is an actin-ubiquitin conjugate. Ball, E., Karlik, C.C., Beall, C.J., Saville, D.L., Sparrow, J.C., Bullard, B., Fyrberg, E.A. Cell (1987) [Pubmed]
  10. A nonsense mutation within the act88F actin gene disrupts myofibril formation in Drosophila indirect flight muscles. Karlik, C.C., Coutu, M.D., Fyrberg, E.A. Cell (1984) [Pubmed]
  11. Expression of human cardiac actin in mouse L cells: a sarcomeric actin associates with a nonmuscle cytoskeleton. Gunning, P., Ponte, P., Kedes, L., Hickey, R.J., Skoultchi, A.I. Cell (1984) [Pubmed]
  12. Production of cardiac muscle abnormalities in offspring of rats receiving triiodothyroacetic acid (triac) and the effect of beta adrenergic blockade. Hawkey, C.M., Olsen, E.G., Symons, C. Cardiovasc. Res. (1981) [Pubmed]
  13. Lesions of the myofibril in myopathic and normal tissue from seven striated muscles. Experimental myopathy of isometric activity produced by phencyclidine and restraint. Kuncl, R.W., Meltzer, H.Y. Acta Neuropathol. (1979) [Pubmed]
  14. In situ study of myofibrils, mitochondria and bound creatine kinases in experimental cardiomyopathies. Veksler, V., Ventura-Clapier, R. Mol. Cell. Biochem. (1994) [Pubmed]
  15. Nebulin: the nebulous, multifunctional giant of striated muscle. McElhinny, A.S., Kazmierski, S.T., Labeit, S., Gregorio, C.C. Trends Cardiovasc. Med. (2003) [Pubmed]
  16. Structural and biochemical remodelling in catecholamine-induced cardiomyopathy: comparative and ontogenetic aspects. Ostádal, B., Pelouch, V., Ostádalová, I., Nováková, O. Mol. Cell. Biochem. (1995) [Pubmed]
  17. Calreticulin reveals a critical Ca(2+) checkpoint in cardiac myofibrillogenesis. Li, J., Pucéat, M., Perez-Terzic, C., Mery, A., Nakamura, K., Michalak, M., Krause, K.H., Jaconi, M.E. J. Cell Biol. (2002) [Pubmed]
  18. Costameres are sites of force transmission to the substratum in adult rat cardiomyocytes. Danowski, B.A., Imanaka-Yoshida, K., Sanger, J.M., Sanger, J.W. J. Cell Biol. (1992) [Pubmed]
  19. Drosophila paramyosin is important for myoblast fusion and essential for myofibril formation. Liu, H., Mardahl-Dumesnil, M., Sweeney, S.T., O'Kane, C.J., Bernstein, S.I. J. Cell Biol. (2003) [Pubmed]
  20. Velocity of the creatine kinase reaction decreases in postischemic myocardium: a 31P-NMR magnetization transfer study of the isolated ferret heart. Neubauer, S., Hamman, B.L., Perry, S.B., Bittl, J.A., Ingwall, J.S. Circ. Res. (1988) [Pubmed]
  21. In vivo analysis of an essential myosin light chain mutation linked to familial hypertrophic cardiomyopathy. Sanbe, A., Nelson, D., Gulick, J., Setser, E., Osinska, H., Wang, X., Hewett, T.E., Klevitsky, R., Hayes, E., Warshaw, D.M., Robbins, J. Circ. Res. (2000) [Pubmed]
  22. Desmin and vimentin coexist at the periphery of the myofibril Z disc. Granger, B.L., Lazarides, E. Cell (1979) [Pubmed]
  23. Actin dynamics at pointed ends regulates thin filament length in striated muscle. Littlefield, R., Almenar-Queralt, A., Fowler, V.M. Nat. Cell Biol. (2001) [Pubmed]
  24. Sequential disassembly of myofibrils induced by myristate acetate in cultured myotubes. Lin, Z.X., Eshelman, J.R., Forry-Schaudies, S., Duran, S., Lessard, J.L., Holtzer, H. J. Cell Biol. (1987) [Pubmed]
  25. Analysis of myofibrillar structure and assembly using fluorescently labeled contractile proteins. Sanger, J.W., Mittal, B., Sanger, J.M. J. Cell Biol. (1984) [Pubmed]
  26. Transport of energy in muscle: the phosphorylcreatine shuttle. Bessman, S.P., Geiger, P.J. Science (1981) [Pubmed]
  27. Localization of creatine kinase isoenzymes in myofibrils. I. Chicken skeletal muscle. Wallimann, T., Turner, D.C., Eppenberger, H.M. J. Cell Biol. (1977) [Pubmed]
  28. Distinct families of Z-line targeting modules in the COOH-terminal region of nebulin. Ojima, K., Lin, Z.X., Bang, M., Holtzer, S., Matsuda, R., Labeit, S., Sweeney, H.L., Holtzer, H. J. Cell Biol. (2000) [Pubmed]
  29. Compositional studies of myofibrils from rabbit striated muscle. Etlinger, J.D., Zak, R., Fischman, D.A. J. Cell Biol. (1976) [Pubmed]
  30. Structure of C protein purified from cardiac muscle. Hartzell, H.C., Sale, W.S. J. Cell Biol. (1985) [Pubmed]
  31. Genetic dissection of Drosophila myofibril formation: effects of actin and myosin heavy chain null alleles. Beall, C.J., Sepanski, M.A., Fyrberg, E.A. Genes Dev. (1989) [Pubmed]
  32. Desmin is essential for the tensile strength and integrity of myofibrils but not for myogenic commitment, differentiation, and fusion of skeletal muscle. Li, Z., Mericskay, M., Agbulut, O., Butler-Browne, G., Carlsson, L., Thornell, L.E., Babinet, C., Paulin, D. J. Cell Biol. (1997) [Pubmed]
  33. Myogenesis in the mouse embryo: differential onset of expression of myogenic proteins and the involvement of titin in myofibril assembly. Fürst, D.O., Osborn, M., Weber, K. J. Cell Biol. (1989) [Pubmed]
  34. The Caenorhabditis elegans unc-78 gene encodes a homologue of actin-interacting protein 1 required for organized assembly of muscle actin filaments. Ono, S. J. Cell Biol. (2001) [Pubmed]
  35. Binding of an ankyrin-1 isoform to obscurin suggests a molecular link between the sarcoplasmic reticulum and myofibrils in striated muscles. Bagnato, P., Barone, V., Giacomello, E., Rossi, D., Sorrentino, V. J. Cell Biol. (2003) [Pubmed]
  36. Immunocytochemical studies of cardiac myofibrillogenesis in early chick embryos. II. Generation of alpha-actinin dots within titin spots at the time of the first myofibril formation. Tokuyasu, K.T., Maher, P.A. J. Cell Biol. (1987) [Pubmed]
  37. Kettin, a major source of myofibrillar stiffness in Drosophila indirect flight muscle. Kulke, M., Neagoe, C., Kolmerer, B., Minajeva, A., Hinssen, H., Bullard, B., Linke, W.A. J. Cell Biol. (2001) [Pubmed]
  38. Visualization of the polarity of isolated titin molecules: a single globular head on a long thin rod as the M band anchoring domain? Nave, R., Fürst, D.O., Weber, K. J. Cell Biol. (1989) [Pubmed]
  39. Contractile activity modulates actin synthesis and turnover in cultured neonatal rat heart cells. Sharp, W.W., Terracio, L., Borg, T.K., Samarel, A.M. Circ. Res. (1993) [Pubmed]
  40. Sarcolemmal reorganization in facioscapulohumeral muscular dystrophy. Reed, P., Porter, N.C., Strong, J., Pumplin, D.W., Corse, A.M., Luther, P.W., Flanigan, K.M., Bloch, R.J. Ann. Neurol. (2006) [Pubmed]
 
WikiGenes - Universities