The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Proton-Motive Force

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Proton-Motive Force

 

High impact information on Proton-Motive Force

  • Here, I report the effects of proton-motive force and membrane potential on two equilibria involving intermediates of the bimetallic centre at different levels of O2 reduction [6].
  • 1 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonate (disodium salt; DIDS) profoundly inhibited the pH-gradient stimulated oxalate uptake [7].
  • We determined the functional unit for proton motive force (Deltap)-driven lactose uptake and lactose/methyl-beta-D-galactopyranoside equilibrium exchange in a proteoliposomal system in which a single cysteine mutant, LacS-C67, defective in Deltap-driven uptake, was co-reconstituted with fully functional cysteine-less protein, LacS-cl [8].
  • The export of the TMAO reductase is driven mainly by the proton motive force, whereas sodium azide exhibits a limited effect on the export [9].
  • The uncoupler nigericin inhibits integration only very slightly, indicating that the thylakoidal delta pH does not play a significant role in the integration mechanism [10].
 

Chemical compound and disease context of Proton-Motive Force

 

Biological context of Proton-Motive Force

 

Anatomical context of Proton-Motive Force

 

Associations of Proton-Motive Force with chemical compounds

 

Gene context of Proton-Motive Force

  • IRS-1 delta PH underwent significantly reduced insulin-dependent tyrosine phosphorylation compared with WT IRS-1 [30].
  • Akt inhibitory phenoxazines did not inhibit the activity of recombinant phosphatidylinositol 3'-kinase, PDK1, or SGK1 but potently inhibited the kinase activity of recombinant Akt and Akt deltaPH, a mutant lacking the pleckstrin homology domain [31].
  • One class included mutants altered in hemA, hemB, hemL, ubi, cydAB or atp, which were defective in generating a proton motive force (PMF) and resistant to aminoglycosides [32].
  • Affinities for G-beta gamma were in the following order: PH-beta 2 >/= PH-beta 1 > PH-delta 1; the affinities of the native enzyme were as follows: PLC-beta 2 >> PLC-delta 1 > PLC-beta 1 [33].
  • The effect of increasing expression of the tyrP gene on the steady-state level of tyrosine accumulated by cells indicates that although the transport system may be dependent on the proton motive force to drive uptake, the system never reaches thermodynamic equilibrium with it [34].
 

Analytical, diagnostic and therapeutic context of Proton-Motive Force

  • Proton-conducting activity was monitored by fluorometry with 9-aminoacridine as an indicator of delta pH in K+-loaded liposomes suspended in a K+-free medium [35].
  • When the delta pH component was decreased either by titration with (NH4)2SO4 or by addition of protonophores or nigericin in the presence of K+, ATPase activity was stimulated [36].
  • Addition of protonophore (carbonyl cyanide m-chlorophenylhydrazone, CCCP) to the perfusion buffer led to decreased ATP levels, increased respiration and a partial (1 microm CCCP), transient (2 microm CCCP) or permanent (10 microm CCCP) collapse of the vacuolar membrane Delta pH [37].
  • The determination of the delta pH was conducted by measuring the transmembrane distribution of weak acids (acetate and butyrate) and of a weak base (methylamine), using flow dialysis and filtration techniques [38].
  • HPLC results indicated a significant difference in florfenicol accumulation between florfenicol-resistant strains and the susceptible strains, which was almost reversed by the addition of a proton motive force blocker [39].

References

  1. Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Atsumi, T., McCarter, L., Imae, Y. Nature (1992) [Pubmed]
  2. Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A. Bertero, M.G., Rothery, R.A., Palak, M., Hou, C., Lim, D., Blasco, F., Weiner, J.H., Strynadka, N.C. Nat. Struct. Biol. (2003) [Pubmed]
  3. Phosphoinositide 3-kinase is required for intracellular Listeria monocytogenes actin-based motility and filopod formation. Sidhu, G., Li, W., Laryngakis, N., Bishai, E., Balla, T., Southwick, F. J. Biol. Chem. (2005) [Pubmed]
  4. Compensatory role of PspA, a member of the phage shock protein operon, in rpoE mutant Salmonella enterica serovar Typhimurium. Becker, L.A., Bang, I.S., Crouch, M.L., Fang, F.C. Mol. Microbiol. (2005) [Pubmed]
  5. Quantification of known components of the Escherichia coli TonB energy transduction system: TonB, ExbB, ExbD and FepA. Higgs, P.I., Larsen, R.A., Postle, K. Mol. Microbiol. (2002) [Pubmed]
  6. Identification of the electron transfers in cytochrome oxidase that are coupled to proton-pumping. Wikström, M. Nature (1989) [Pubmed]
  7. Oxalate transport by anion exchange across rabbit ileal brush border. Knickelbein, R.G., Aronson, P.S., Dobbins, J.W. J. Clin. Invest. (1986) [Pubmed]
  8. The lactose transport protein is a cooperative dimer with two sugar translocation pathways. Veenhoff, L.M., Heuberger, E.H., Poolman, B. EMBO J. (2001) [Pubmed]
  9. A novel sec-independent periplasmic protein translocation pathway in Escherichia coli. Santini, C.L., Ize, B., Chanal, A., Müller, M., Giordano, G., Wu, L.F. EMBO J. (1998) [Pubmed]
  10. Targeting of proteins to the thylakoids by bipartite presequences: CFoII is imported by a novel, third pathway. Michl, D., Robinson, C., Shackleton, J.B., Herrmann, R.G., Klösgen, R.B. EMBO J. (1994) [Pubmed]
  11. Functional interactions between the subunits of the lactose transporter from Streptococcus thermophilus. Geertsma, E.R., Duurkens, R.H., Poolman, B. J. Mol. Biol. (2005) [Pubmed]
  12. Evidence for the involvement of proton motive force in the transport of glucose by a mutant of Streptococcus mutans strain DR0001 defective in glucose-phosphoenolpyruvate phosphotransferase activity. Hamilton, I.R., St Martin, E.J. Infect. Immun. (1982) [Pubmed]
  13. Energetics of tetracycline transport into Escherichia coli. Smith, M.C., Chopra, I. Antimicrob. Agents Chemother. (1984) [Pubmed]
  14. Evidence for an electrogenic 3-deoxy-2-oxo-D-gluconate--proton co-transport driven by the protonmotive force in Escherichia coli K12. Lagarde, A. Biochem. J. (1977) [Pubmed]
  15. Osmotic adaptation of Escherichia coli with a negligible proton motive force in the presence of carbonyl cyanide m-chlorophenylhydrazone. Ohyama, T., Mugikura, S., Nishikawa, M., Igarashi, K., Kobayashi, H. J. Bacteriol. (1992) [Pubmed]
  16. 31P nuclear magnetic resonance studies of bioenergetics and glycolysis in anaerobic Escherichia coli cells. Ugurbil, K., Rottenberg, H., Glynn, P., Shulman, R.G. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  17. Glutamate transport in Rhodobacter sphaeroides is mediated by a novel binding protein-dependent secondary transport system. Jacobs, M.H., van der Heide, T., Driessen, A.J., Konings, W.N. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  18. HPr(His approximately P)-mediated phosphorylation differently affects counterflow and proton motive force-driven uptake via the lactose transport protein of Streptococcus thermophilus. Gunnewijk, M.G., Poolman, B. J. Biol. Chem. (2000) [Pubmed]
  19. Requirement of ATP in bacterial chemotaxis. Shioi, J.I., Galloway, R.J., Niwano, M., Chinnock, R.E., Taylor, B.L. J. Biol. Chem. (1982) [Pubmed]
  20. Lysophospholipid flipping across the Escherichia coli inner membrane catalyzed by a transporter (LplT) belonging to the major facilitator superfamily. Harvat, E.M., Zhang, Y.M., Tran, C.V., Zhang, Z., Frank, M.W., Rock, C.O., Saier, M.H. J. Biol. Chem. (2005) [Pubmed]
  21. Escherichia coli adenylate cyclase complex: regulation by the proton electrochemical gradient. Peterkofsky, A., Gazdar, C. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  22. The effect of hormones on proton compartmentation in hepatocytes. Strzelecki, T., Thomas, J.A., Koch, C.D., LaNoue, K.F. J. Biol. Chem. (1984) [Pubmed]
  23. ATP-dependent uptake of 5-hydroxytryptamine by secretory granules isolated from thyroid parafollicular cells. Cidon, S., Tamir, H., Nunez, E.A., Gershon, M.D. J. Biol. Chem. (1991) [Pubmed]
  24. Matrix magnesium and the permeability of heart mitochondria to potassium ion. Jung, D.W., Brierley, G.P. J. Biol. Chem. (1986) [Pubmed]
  25. ATP-driven proton fluxes across membranes of secretory organelles. Cidon, S., Ben-David, H., Nelson, N. J. Biol. Chem. (1983) [Pubmed]
  26. Energetically distinct early and late stages of HlyB/HlyD-dependent secretion across both Escherichia coli membranes. Koronakis, V., Hughes, C., Koronakis, E. EMBO J. (1991) [Pubmed]
  27. Thyrotropin induces the acidification of the secretory granules of parafollicular cells by increasing the chloride conductance of the granular membrane. Barasch, J., Gershon, M.D., Nunez, E.A., Tamir, H., al-Awqati, Q. J. Cell Biol. (1988) [Pubmed]
  28. Diminished serotonin uptake in platelets of transgenic mice with increased Cu/Zn-superoxide dismutase activity. Schickler, M., Knobler, H., Avraham, K.B., Elroy-Stein, O., Groner, Y. EMBO J. (1989) [Pubmed]
  29. Protonmotive force-driven active transport of D-glucose and L-proline in the protozoan parasite Leishmania donovani. Zilberstein, D., Dwyer, D.M. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  30. Tyrosine phosphorylation of insulin receptor substrate-1 in vivo depends upon the presence of its pleckstrin homology region. Voliovitch, H., Schindler, D.G., Hadari, Y.R., Taylor, S.I., Accili, D., Zick, Y. J. Biol. Chem. (1995) [Pubmed]
  31. Identification of N10-substituted phenoxazines as potent and specific inhibitors of Akt signaling. Thimmaiah, K.N., Easton, J.B., Germain, G.S., Morton, C.L., Kamath, S., Buolamwini, J.K., Houghton, P.J. J. Biol. Chem. (2005) [Pubmed]
  32. Genetic analysis of zwittermicin A resistance in Escherichia coli: effects on membrane potential and RNA polymerase. Stabb, E.V., Handelsman, J. Mol. Microbiol. (1998) [Pubmed]
  33. Differential association of the pleckstrin homology domains of phospholipases C-beta 1, C-beta 2, and C-delta 1 with lipid bilayers and the beta gamma subunits of heterotrimeric G proteins. Wang, T., Pentyala, S., Rebecchi, M.J., Scarlata, S. Biochemistry (1999) [Pubmed]
  34. Cloning of the tyrP gene and further characterization of the tyrosine-specific transport system in Escherichia coli K-12. Wookey, P.J., Pittard, J., Forrest, S.M., Davidson, B.E. J. Bacteriol. (1984) [Pubmed]
  35. The proteolipid subunit of the chloroplast adenosine triphosphatase complex. Reconstitution and demonstration of proton-conductive properties. Sigrist-Nelson, K., Azzi, A. J. Biol. Chem. (1980) [Pubmed]
  36. The control by delta mu H+ of the tonoplast-bound H+-translocating adenosine triphosphatase from rubber-tree (Hevea brasiliensis) latex. Marin, B.P. Biochem. J. (1985) [Pubmed]
  37. Intracellular pH homeostasis in the filamentous fungus Aspergillus niger. Hesse, S.J., Ruijter, G.J., Dijkema, C., Visser, J. Eur. J. Biochem. (2002) [Pubmed]
  38. The electrochemical proton gradient in Mycoplasma cells. Benyoucef, M., Rigaud, J.L., Leblanc, G. Eur. J. Biochem. (1981) [Pubmed]
  39. Characterization of florfenicol resistance among calf pathogenic Escherichia coli. Du, X., Xia, C., Shen, J., Wu, B., Shen, Z. FEMS Microbiol. Lett. (2004) [Pubmed]
 
WikiGenes - Universities