The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Dentate Gyrus

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Dentate Gyrus


Psychiatry related information on Dentate Gyrus


High impact information on Dentate Gyrus


Chemical compound and disease context of Dentate Gyrus

  • The stratum moleculare of the dentate gyrus, whose structure was histologically intact after ischemic insult, also showed a reduction of NMDA receptors 7 days following ischemia [16].
  • In the present study we determine the effect of status-epilepticus induced by lithium/pilocarpine at postnatal day 10 (P10 SE) on the expression of glutamate receptor and transporter mRNAs in hippocampal dentate granule cells and protein levels in dentate gyrus of these animals in adulthood [17].
  • Both KA status epilepticus and kindling in duced mossy-fiber sprouting, as evidenced by ectopic Timm staining in supragranular layers of the dentate gyrus [18].
  • However, after longer durations of ischemia (5, 10, and 20 min) we found a time-dependent reduction in CaM-KII activity in both CA1 and dentate gyrus regions, whereas no change was detected in cyclic AMP-dependent protein kinase activity [19].
  • Traumatic brain injury increased the production of BrdU-labeled cells in the dentate gyrus with a maximal rate observed at 3 days post-injury [20].

Biological context of Dentate Gyrus


Anatomical context of Dentate Gyrus


Associations of Dentate Gyrus with chemical compounds

  • We report here that noradrenaline produces an enhancement in the activity of voltage-dependent calcium channels in granule cells of the hippocampal dentate gyrus [31].
  • Lesion-induced sprouting in the rat dentate gyrus is inhibited by repeated ethanol administration [26].
  • Mossy fibers are the sole excitatory projection from dentate gyrus granule cells to the hippocampus, where they release glutamate, dynorphin, and zinc [32].
  • Dense, AT8-immunopositive deposits were found in the subiculum, stratum oriens of hippocampal field CA1, and the hilus of the dentate gyrus [33].
  • These results indicate that a genetic perturbation of serotonin receptor function can modulate dentate gyrus plasticity and that plasticity in this structure may contribute to neural mechanisms underlying hippocampus-dependent behaviors [34].

Gene context of Dentate Gyrus

  • In contrast, all three cyclin D mRNAs are present in the cultures derived from 5-day-old hippocampi, when developmental neurogenesis in the dentate gyrus takes place [35].
  • In situ hybridization demonstrated that NGFI-C is rapidly induced in the dentate gyrus of the hippocampus after seizure, but in contrast to NGFI-A, increases in NGFI-C mRNA were not detected in the overlying cortex [36].
  • Herein we demonstrate that Npas3-/- mice are deficient in expression of hippocampal FGF receptor subtype 1 mRNA, most notably in the dentate gyrus [37].
  • Additionally, staining was observed in neurons in the stratum oriens, a population of neurons at the periphery of the CA4 sector, scattered, probably short-axon perikarya in the CA1 sector, and fibers in the perforant path and the molecular layer of the dentate gyrus [38].
  • Corticosterone negative feedback may have contributed in part to the stress-induced decreases in BDNF mRNA levels, but stress still decreased BDNF in the dentate gyrus in adrenalectomized rats suggesting that additional components of the stress response must also contribute to the observed changes in BDNF [39].

Analytical, diagnostic and therapeutic context of Dentate Gyrus


  1. Activation of cAMP-response-element-binding protein (CREB) after focal cerebral ischemia stimulates neurogenesis in the adult dentate gyrus. Zhu, D.Y., Lau, L., Liu, S.H., Wei, J.S., Lu, Y.M. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  2. Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. Scharfman, H.E., Goodman, J.H., Sollas, A.L. J. Neurosci. (2000) [Pubmed]
  3. Changes in hippocampal circuitry after pilocarpine-induced seizures as revealed by opioid receptor distribution and activation. Bausch, S.B., Chavkin, C. J. Neurosci. (1997) [Pubmed]
  4. Brain damage due to episodic alcohol exposure in vivo and in vitro: furosemide neuroprotection implicates edema-based mechanism. Collins, M.A., Zou, J.Y., Neafsey, E.J. FASEB J. (1998) [Pubmed]
  5. Erythropoietin receptor-mediated inhibition of exocytotic glutamate release confers neuroprotection during chemical ischemia. Kawakami, M., Sekiguchi, M., Sato, K., Kozaki, S., Takahashi, M. J. Biol. Chem. (2001) [Pubmed]
  6. Differential hippocampal expression of glutamic acid decarboxylase 65 and 67 messenger RNA in bipolar disorder and schizophrenia. Heckers, S., Stone, D., Walsh, J., Shick, J., Koul, P., Benes, F.M. Arch. Gen. Psychiatry (2002) [Pubmed]
  7. Electroconvulsive shock reduces inositol 1,4,5-trisphosphate 3-kinase mRNA expression in rat dentate gyrus. Kim, H., Ko, J.P., Kang, U.G., Park, J.B., Kim, H.L., Lee, Y.H., Kim, Y.S. J. Neurochem. (1994) [Pubmed]
  8. Systemic interleukin-1 beta decreases brain-derived neurotrophic factor messenger RNA expression in the rat hippocampal formation. Lapchak, P.A., Araujo, D.M., Hefti, F. Neuroscience (1993) [Pubmed]
  9. Psychological stress increases histone H3 phosphorylation in adult dentate gyrus granule neurons: involvement in a glucocorticoid receptor-dependent behavioural response. Bilang-Bleuel, A., Ulbricht, S., Chandramohan, Y., De Carli, S., Droste, S.K., Reul, J.M. Eur. J. Neurosci. (2005) [Pubmed]
  10. Dexamethasone induces limited apoptosis and extensive sublethal damage to specific subregions of the striatum and hippocampus: implications for mood disorders. Haynes, L.E., Griffiths, M.R., Hyde, R.E., Barber, D.J., Mitchell, I.J. Neuroscience (2001) [Pubmed]
  11. Widespread expression of the human and rat Huntington's disease gene in brain and nonneural tissues. Strong, T.V., Tagle, D.A., Valdes, J.M., Elmer, L.W., Boehm, K., Swaroop, M., Kaatz, K.W., Collins, F.S., Albin, R.L. Nat. Genet. (1993) [Pubmed]
  12. Neurogenesis in the adult human hippocampus. Eriksson, P.S., Perfilieva, E., Björk-Eriksson, T., Alborn, A.M., Nordborg, C., Peterson, D.A., Gage, F.H. Nat. Med. (1998) [Pubmed]
  13. Normal spatial learning despite regional inhibition of LTP in mice lacking Thy-1. Nosten-Bertrand, M., Errington, M.L., Murphy, K.P., Tokugawa, Y., Barboni, E., Kozlova, E., Michalovich, D., Morris, R.G., Silver, J., Stewart, C.L., Bliss, T.V., Morris, R.J. Nature (1996) [Pubmed]
  14. Regulation of NMDA channel function by endogenous Ca(2+)-dependent phosphatase. Lieberman, D.N., Mody, I. Nature (1994) [Pubmed]
  15. Two components of long-term potentiation induced by different patterns of afferent activation. Grover, L.M., Teyler, T.J. Nature (1990) [Pubmed]
  16. Excitatory amino acid binding sites in the rat hippocampus after transient forebrain ischemia. Onodera, H., Araki, T., Kogure, K. J. Cereb. Blood Flow Metab. (1989) [Pubmed]
  17. Long-term alterations in glutamate receptor and transporter expression following early-life seizures are associated with increased seizure susceptibility. Zhang, G., Raol, Y.S., Hsu, F.C., Brooks-Kayal, A.R. J. Neurochem. (2004) [Pubmed]
  18. Resistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling. Haas, K.Z., Sperber, E.F., Opanashuk, L.A., Stanton, P.K., Moshé, S.L. Hippocampus. (2001) [Pubmed]
  19. Activity of Ca2+/calmodulin-dependent protein kinase II following ischemia: a comparison between CA1 and dentate gyrus in a hippocampal slice model. Westgate, S.A., Brown, J., Aronowski, J., Waxham, M.N. J. Neurochem. (1994) [Pubmed]
  20. Enhanced neurogenesis in the rodent hippocampus following traumatic brain injury. Dash, P.K., Mach, S.A., Moore, A.N. J. Neurosci. Res. (2001) [Pubmed]
  21. Numerous candidate plasticity-related genes revealed by differential cDNA cloning. Nedivi, E., Hevroni, D., Naot, D., Israeli, D., Citri, Y. Nature (1993) [Pubmed]
  22. Autoradiographic characterization of [3H]-5-HT-moduline binding sites in rodent brain and their relationship to 5-HT1B receptors. Cloëz-Tayarani, I., Cardona, A., Rousselle, J.C., Massot, O., Edelman, L., Fillion, G. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  23. Long-term potentiation increases tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit 2B in rat dentate gyrus in vivo. Rosenblum, K., Dudai, Y., Richter-Levin, G. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  24. Running enhances neurogenesis, learning, and long-term potentiation in mice. van Praag, H., Christie, B.R., Sejnowski, T.J., Gage, F.H. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  25. Brain-derived neurotrophic factor enhances fast excitatory synaptic transmission in human epileptic dentate gyrus. Zhu, W.J., Roper, S.N. Ann. Neurol. (2001) [Pubmed]
  26. Lesion-induced sprouting in the rat dentate gyrus is inhibited by repeated ethanol administration. West, J.R., Lind, M.D., Demuth, R.M., Parker, E.S., Alkana, R.L., Cassell, M., Black, A.C. Science (1982) [Pubmed]
  27. Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model. Buhl, E.H., Otis, T.S., Mody, I. Science (1996) [Pubmed]
  28. Molecular cloning and tissue distribution of a receptor for pituitary adenylate cyclase-activating polypeptide. Hashimoto, H., Ishihara, T., Shigemoto, R., Mori, K., Nagata, S. Neuron (1993) [Pubmed]
  29. Kv8.1, a new neuronal potassium channel subunit with specific inhibitory properties towards Shab and Shaw channels. Hugnot, J.P., Salinas, M., Lesage, F., Guillemare, E., de Weille, J., Heurteaux, C., Mattéi, M.G., Lazdunski, M. EMBO J. (1996) [Pubmed]
  30. Localization and functional properties of a rat brain alpha 1A calcium channel reflect similarities to neuronal Q- and P-type channels. Stea, A., Tomlinson, W.J., Soong, T.W., Bourinet, E., Dubel, S.J., Vincent, S.R., Snutch, T.P. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  31. Noradrenaline and beta-adrenoceptor agonists increase activity of voltage-dependent calcium channels in hippocampal neurons. Gray, R., Johnston, D. Nature (1987) [Pubmed]
  32. Monosynaptic GABAergic signaling from dentate to CA3 with a pharmacological and physiological profile typical of mossy fiber synapses. Walker, M.C., Ruiz, A., Kullmann, D.M. Neuron (2001) [Pubmed]
  33. Rapid induction of intraneuronal neurofibrillary tangles in apolipoprotein E-deficient mice. Bi, X., Yong, A.P., Zhou, J., Ribak, C.E., Lynch, G. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  34. Perturbed dentate gyrus function in serotonin 5-HT2C receptor mutant mice. Tecott, L.H., Logue, S.F., Wehner, J.M., Kauer, J.A. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  35. The critical role of cyclin D2 in adult neurogenesis. Kowalczyk, A., Filipkowski, R.K., Rylski, M., Wilczynski, G.M., Konopacki, F.A., Jaworski, J., Ciemerych, M.A., Sicinski, P., Kaczmarek, L. J. Cell Biol. (2004) [Pubmed]
  36. Neural-specific expression, genomic structure, and chromosomal localization of the gene encoding the zinc-finger transcription factor NGFI-C. Crosby, S.D., Veile, R.A., Donis-Keller, H., Baraban, J.M., Bhat, R.V., Simburger, K.S., Milbrandt, J. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  37. The neuronal PAS domain protein 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice. Pieper, A.A., Wu, X., Han, T.W., Estill, S.J., Dang, Q., Wu, L.C., Reece-Fincanon, S., Dudley, C.A., Richardson, J.A., Brat, D.J., McKnight, S.L. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  38. The distribution of chromogranin A-like immunoreactivity in the human hippocampus coincides with the pattern of resistance to epilepsy-induced neuronal damage. Munoz, D.G. Ann. Neurol. (1990) [Pubmed]
  39. Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. Smith, M.A., Makino, S., Kvetnansky, R., Post, R.M. J. Neurosci. (1995) [Pubmed]
  40. Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Kaplan, M.S., Hinds, J.W. Science (1977) [Pubmed]
  41. Differential ligand-dependent protein-protein interactions between nuclear receptors and a neuronal-specific cofactor. Greiner, E.F., Kirfel, J., Greschik, H., Huang, D., Becker, P., Kapfhammer, J.P., Schüle, R. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  42. Loss of muscarinic receptors and of stimulated phospholipid labeling in ibotenate-treated hippocampus. Fisher, S.K., Frey, K.A., Agranoff, B.W. J. Neurosci. (1981) [Pubmed]
  43. Actions of brain-derived neurotrophic factor in slices from rats with spontaneous seizures and mossy fiber sprouting in the dentate gyrus. Scharfman, H.E., Goodman, J.H., Sollas, A.L. J. Neurosci. (1999) [Pubmed]
  44. Seizures induce dramatic and distinctly different changes in enkephalin, dynorphin, and CCK immunoreactivities in mouse hippocampal mossy fibers. Gall, C. J. Neurosci. (1988) [Pubmed]
WikiGenes - Universities